511 research outputs found

    Thin-Wall Machining of Light Alloys: A Review of Models and Industrial Approaches

    Get PDF
    Thin-wall parts are common in the aeronautical sector. However, their machining presents serious challenges such as vibrations and part deflections. To deal with these challenges, di erent approaches have been followed in recent years. This work presents the state of the art of thin-wall light-alloy machining, analyzing the problems related to each type of thin-wall parts, exposing the causes of both instability and deformation through analytical models, summarizing the computational techniques used, and presenting the solutions proposed by di erent authors from an industrial point of view. Finally, some further research lines are proposed

    Finite Element Simulation Combination to Predict the Distortion of Thin Walled Milled Aluminum Workpieces as a Result of Machining Induced Residual Stresses

    Get PDF
    Machining induced residual stresses (MIRS) are a main driver for distortion of monolithic thin walled aluminum workpieces. A typical machining process for manufacturing such geometries for the aerospace industry is milling. In order to avoid high costs due to remanufacturing or part rejection, a simulation combination, consisting of two different finite element method (FEM) models, is developed to predict the part distortion due to MIRS. First, a 3D FEM cutting simulation is developed to predict the residual stresses due to machining. This simulation avoids cost intensive residual stress measurements. The milling process of the aluminum alloy AA7050-T7451 with a regular end mill is simulated. The simulation output, MIRS, forces and temperatures, is validated by face milling experiments on aluminum. The model takes mechanical dynamic effects, thermomechanical coupling, material properties and a damage law into account. Second, a subsequent finite element simulation, characterized by a static, linear elastic model, where the simulated MIRS from the cutting model are used as an input and the distortion of the workpiece is calculated, is presented. The predicted distortion is compared to an additional experiment, where a 1 mm thick wafer was removed at the milled surface of the aluminum workpiece. Furthermore, a thin walled component that represents a down scaled version of an aerospace component is manufactured and its distortion is analyzed. The results show that MIRS could be forecasted with moderate accuracy, which leads to the conclusion that the FEM cutting model needs to be improved in order to use the MIRS for a correct prediction of the distortion with the help of the linear elastic FEM model. The linear elastic model on the other hand is able to predict the part distortion with higher accuracy when using measured data instead of MIRS from the cutting simulation

    Eco-efficient process based on conventional machining as an alternative technology to chemical milling of aeronautical metal skin panels

    Get PDF
    El fresado químico es un proceso diseñado para la reducción de peso de pieles metálicas que, a pesar de los problemas medioambientales asociados, se utiliza en la industria aeronáutica desde los años 50. Entre sus ventajas figuran el cumplimiento de las estrictas tolerancias de diseño de piezas aeroespaciales y que pese a ser un proceso de mecanizado, no induce tensiones residuales. Sin embargo, el fresado químico es una tecnología contaminante y costosa que tiende a ser sustituida. Gracias a los avances realizados en el mecanizado, la tecnología de fresado convencional permite alcanzar las tolerancias requeridas siempre y cuando se consigan evitar las vibraciones y la flexión de la pieza, ambas relacionadas con los parámetros del proceso y con los sistemas de utillaje empleados. Esta tesis analiza las causas de la inestabilidad del corte y la deformación de las piezas a través de una revisión bibliográfica que cubre los modelos analíticos, las técnicas computacionales y las soluciones industriales en estudio actualmente. En ella, se aprecia cómo los modelos analíticos y las soluciones computacionales y de simulación se centran principalmente en la predicción off-line de vibraciones y de posibles flexiones de la pieza. Sin embargo, un enfoque más industrial ha llevado al diseño de sistemas de fijación, utillajes, amortiguadores basados en actuadores, sistemas de rigidez y controles adaptativos apoyados en simulaciones o en la selección estadística de parámetros. Además se han desarrollado distintas soluciones CAM basadas en la aplicación de gemelos virtuales. En la revisión bibliográfica se han encontrado pocos documentos relativos a pieles y suelos delgados por lo que se ha estudiado experimentalmente el efecto de los parámetros de corte en su mecanizado. Este conjunto de experimentos ha demostrado que, pese a usar un sistema que aseguraba la rigidez de la pieza, las pieles se comportaban de forma diferente a un sólido rígido en términos de fuerzas de mecanizado cuando se utilizaban velocidades de corte cercanas a la alta velocidad. También se ha verificado que todas las muestras mecanizadas entraban dentro de tolerancia en cuanto a la rugosidad de la pieza. Paralelamente, se ha comprobado que la correcta selección de parámetros de mecanizado puede reducir las fuerzas de corte y las tolerancias del proceso hasta un 20% y un 40%, respectivamente. Estos datos pueden tener aplicación industrial en la simplificación de los sistemas de amarre o en el incremento de la eficiencia del proceso. Este proceso también puede mejorarse incrementando la vida de la herramienta al utilizar fluidos de corte. Una correcta lubricación puede reducir la temperatura del proceso y las tensiones residuales inducidas a la pieza. Con este objetivo, se han desarrollado diferentes lubricantes, basados en el uso de líquidos iónicos (IL) y se han comparado con el comportamiento tribológico del par de contacto en seco y con una taladrina comercial. Los resultados obtenidos utilizando 1 wt% de los líquidos iónicos en un tribómetro tipo pin-on-disk demuestran que el IL no halogenado reduce significativamente el desgaste y la fricción entre el aluminio, material a mecanizar, y el carburo de tungsteno, material de la herramienta, eliminando casi toda la adhesión del aluminio sobre el pin, lo que puede incrementar considerablemente la vida de la herramienta.Chemical milling is a process designed to reduce the weight of metals skin panels. This process has been used since 1950s in the aerospace industry despite its environmental concern. Among its advantages, chemical milling does not induce residual stress and parts meet the required tolerances. However, this process is a pollutant and costly technology. Thanks to the last advances in conventional milling, machining processes can achieve similar quality results meanwhile vibration and part deflection are avoided. Both problems are usually related to the cutting parameters and the workholding. This thesis analyses the causes of the cutting instability and part deformation through a literature review that covers analytical models, computational techniques and industrial solutions. Analytics and computational solutions are mainly focused on chatter and deflection prediction and industrial approaches are focused on the design of workholdings, fixtures, damping actuators, stiffening devices, adaptive control systems based on simulations and the statistical parameters selection, and CAM solutions combined with the use of virtual twins applications. In this literature review, few research works about thin-plates and thin-floors is found so the effect of the cutting parameters is also studied experimentally. These experiments confirm that even using rigid workholdings, the behavior of the part is different to a rigid body at high speed machining. On the one hand, roughness values meet the required tolerances under every set of the tested parameters. On the other hand, a proper parameter selection reduces the cutting forces and process tolerances by up to 20% and 40%, respectively. This fact can be industrially used to simplify workholding and increase the machine efficiency. Another way to improve the process efficiency is to increase tool life by using cutting fluids. Their use can also decrease the temperature of the process and the induced stresses. For this purpose, different water-based lubricants containing three types of Ionic Liquids (IL) are compared to dry and commercial cutting fluid conditions by studying their tribological behavior. Pin on disk tests prove that just 1wt% of one of the halogen-free ILs significantly reduces wear and friction between both materials, aluminum and tungsten carbide. In fact, no wear scar is noticed on the ball when one of the ILs is used, which, therefore, could considerably increase tool life

    Influence of Machining Parameters on Heat Generation during Milling of Aluminum Alloys

    Get PDF
    Thin-walled components, i.e. fuselage frames of airplanes, are prone to an unstable process behavior during milling. Therefore, tools with a chamfer between the cutting edge and the flank face are often used for such machining tasks. During milling, the chamfered area comes into contact with the just cut surface. This contact leads to process damping forces and the induced heat into the workpiece in this contact zone is increased. Furthermore, the amount of induced heat depends on the process parameters. At certain spots on the machined surface this may lead to a local overheating, which can reduce stiffness significantly. When this occurs during milling of a thin-walled component, the component is often regarded as reject. In this paper, the influence of chamfers and process parameters on the induced heat into the workpiece is investigated experimentally. In addition, a simulation which predict the temperature in the workpiece in dependence of the process parameters is presented.Ministry of Economics, Labour and Transport of Lower Saxony/ZW3-80134969DFG/DE 447/90-

    Virtual Machining: Capabilities and Challenges of Process Simulations in the Aerospace Industry

    Get PDF
    AbstractMilling processes for the manufacturing of parts for aerospace applications can be influenced by various effects. When machining structural parts with high material removal rates, the stiffness of the machine tool can be a limiting factor because chatter vibrations. Additionally, vibrations of thin-walled structures, e. g., the blades of impellers or turbines, can lead to chatter vibrations and surface location errors. Thermo-mechanical deformations are another cause for violations of given shape tolerances. Geometric physically-based process simulations can be used to analyze milling processes with regard to these effects in order to optimize the process parameters. In this paper, an overview of several applications of a geometric physically-based simulation system for analyzing different effects during milling processes is presented. Depending on the relevant effects, process forces, the dynamic behaviour of the tool-spindle-machine system, vibrations of workpieces and fixture systems, as well as thermo-mechanical deformations are calculated

    Virtual Machining: Capabilities and Challenges of Process Simulations in the Aerospace Industry

    Get PDF
    AbstractMilling processes for the manufacturing of parts for aerospace applications can be influenced by various effects. When machining structural parts with high material removal rates, the stiffness of the machine tool can be a limiting factor because chatter vibrations. Additionally, vibrations of thin-walled structures, e. g., the blades of impellers or turbines, can lead to chatter vibrations and surface location errors. Thermo-mechanical deformations are another cause for violations of given shape tolerances. Geometric physically-based process simulations can be used to analyze milling processes with regard to these effects in order to optimize the process parameters. In this paper, an overview of several applications of a geometric physically-based simulation system for analyzing different effects during milling processes is presented. Depending on the relevant effects, process forces, the dynamic behaviour of the tool-spindle-machine system, vibrations of workpieces and fixture systems, as well as thermo-mechanical deformations are calculated

    Effect of state-dependent time delay on dynamics of trimming of thin walled structures

    Get PDF
    Acknowledgments This work was supported by the National Key R&D Program of China (2020YFA0714900), National Natural Science Foundation of China (52075205, 92160207, 52090054, 52188102).Peer reviewedPostprin

    Stability enhancement and chatter suppression in continuous radial immersion milling

    Get PDF
    Acknowledgments The authors would like to thank the Federal Ministry of Economic Affairs and Energy (BMWi) and the AIF Projekt GmbH for funding this scientific paper as part of the research project "UltrahardMill" of the central Innovation Programme for SMEs. The authors appreciate Dr.-Ing. Michael Löser and Dipl.-Ing. Zhongyan Zhu from TU Dresden for discussing and modifying the content of the manuscript. Besides, Mr. Daniel Schmidt from Fraunhofer Institute for Machine Tools and Forming Technology (IWU) provided us with lots of generous help to carry out the experiments.Peer reviewedPostprin

    Research on Cutting Force of Turn-Milling Based on Thin-Walled Blade

    Get PDF
    Turn-milling is regarded as the milling of a curved surface while rotating the workpiece around its center point, which combines effectively the advantages of both turning and milling, wherein it allows for good metal removal with the difficult-to-cut thin-walled workpieces in aviation. The objective of the present work is to study cutting force by turn-milling in cutting condition. Aiming at the deformation properties of thin-walled blade, the predicted models of rigid cutting force and flexible cutting force with ball cutter are provided, respectively, in turn-milling process. The deformation values of blade and cutter are calculated, respectively, based on the engaged trajectory by using the iterative algorithm. The rigid and flexible cutting forces are compared and the influence degrees of cutting parameters on cutting forces are analyzed. These conclusions provide theoretical foundation and reference for turn-milling mechanism research
    corecore