16 research outputs found

    A Track Reconstructing Low-latency Trigger Processor for High-energy Physics

    Get PDF
    The detection and analysis of the large number of particles emerging from high-energy collisions between atomic nuclei is a major challenge in experimental heavy-ion physics. Efficient trigger systems help to focus the analysis on relevant events. A primary objective of the Transition Radiation Detector of the ALICE experiment at the LHC is to trigger on high-momentum electrons. In this thesis, a trigger processor is presented that employs massive parallelism to perform the required online event reconstruction within 2 µs to contribute to the Level-1 trigger decision. Its three-stage hierarchical architecture comprises 109 nodes based on FPGA technology. Ninety processing nodes receive data from the detector front-end at an aggregate net bandwidth of 2.16 Tbps via 1080 optical links. Using specifically developed components and interconnections, the system combines high bandwidth with minimum latency. The employed tracking algorithm three-dimensionally reassembles the track segments found in the detector's drift chambers based on explicit value comparisons, calculates the momentum of the originating particles from the course of the reconstructed tracks, and finally leads to a trigger decision. The architecture is capable of processing up to 20,000 track segments in less than 2 µs with high detection efficiency and reconstruction precision for high-momentum particles. As a result, this thesis shows how a trigger processor performing complex online track reconstruction within tight real-time requirements can be realized. The presented hardware has been built and is in continuous data taking operation in the ALICE experiment

    Novel Multicarrier Memory Channel Architecture Using Microwave Interconnects: Alleviating the Memory Wall

    Get PDF
    abstract: The increase in computing power has simultaneously increased the demand for input/output (I/O) bandwidth. Unfortunately, the speed of I/O and memory interconnects have not kept pace. Thus, processor-based systems are I/O and interconnect limited. The memory aggregated bandwidth is not scaling fast enough to keep up with increasing bandwidth demands. The term "memory wall" has been coined to describe this phenomenon. A new memory bus concept that has the potential to push double data rate (DDR) memory speed to 30 Gbit/s is presented. We propose to map the conventional DDR bus to a microwave link using a multicarrier frequency division multiplexing scheme. The memory bus is formed using a microwave signal carried within a waveguide. We call this approach multicarrier memory channel architecture (MCMCA). In MCMCA, each memory signal is modulated onto an RF carrier using 64-QAM format or higher. The carriers are then routed using substrate integrated waveguide (SIW) interconnects. At the receiver, the memory signals are demodulated and then delivered to SDRAM devices. We pioneered the usage of SIW as memory channel interconnects and demonstrated that it alleviates the memory bandwidth bottleneck. We demonstrated SIW performance superiority over conventional transmission line in immunity to cross-talk and electromagnetic interference. We developed a methodology based on design of experiment (DOE) and response surface method techniques that optimizes the design of SIW interconnects and minimizes its performance fluctuations under material and manufacturing variations. Along with using SIW, we implemented a multicarrier architecture which enabled the aggregated DDR bandwidth to reach 30 Gbit/s. We developed an end-to-end system model in Simulink and demonstrated the MCMCA performance for ultra-high throughput memory channel. Experimental characterization of the new channel shows that by using judicious frequency division multiplexing, as few as one SIW interconnect is sufficient to transmit the 64 DDR bits. Overall aggregated bus data rate achieves 240 GBytes/s data transfer with EVM not exceeding 2.26% and phase error of 1.07 degree or less.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Space Station Freedom data management system growth and evolution report

    Get PDF
    The Information Sciences Division at the NASA Ames Research Center has completed a 6-month study of portions of the Space Station Freedom Data Management System (DMS). This study looked at the present capabilities and future growth potential of the DMS, and the results are documented in this report. Issues have been raised that were discussed with the appropriate Johnson Space Center (JSC) management and Work Package-2 contractor organizations. Areas requiring additional study have been identified and suggestions for long-term upgrades have been proposed. This activity has allowed the Ames personnel to develop a rapport with the JSC civil service and contractor teams that does permit an independent check and balance technique for the DMS

    Hybrid NRZ/Multi-Tone Signaling for High-Speed Low-Power Wireline Transceivers

    Get PDF
    Over the past few decades, incessant growth of Internet networking traffic and High-Performance Computing (HPC) has led to a tremendous demand for data bandwidth. Digital communication technologies combined with advanced integrated circuit scaling trends have enabled the semiconductor and microelectronic industry to dramatically scale the bandwidth of high-loss interfaces such as Ethernet, backplane, and Digital Subscriber Line (DSL). The key to achieving higher bandwidth is to employ equalization technique to compensate the channel impairments such as Inter-Symbol Interference (ISI), crosstalk, and environmental noise. Therefore, todayâs advanced input/outputs (I/Os) has been equipped with sophisticated equalization techniques to push beyond the uncompensated bandwidth of the system. To this end, process scaling has continually increased the data processing capability and improved the I/O performance over the last 15 years. However, since the channel bandwidth has not scaled with the same pace, the required signal processing and equalization circuitry becomes more and more complicated. Thereby, the energy efficiency improvements are largely offset by the energy needed to compensate channel impairments. In this design paradigm, re-thinking about the design strategies in order to not only satisfy the bandwidth performance, but also to improve power-performance becomes an important necessity. It is well known in communication theory that coding and signaling schemes have the potential to provide superior performance over band-limited channels. However, the choice of the optimum data communication algorithm should be considered by accounting for the circuit level power-performance trade-offs. In this thesis we have investigated the application of new algorithm and signaling schemes in wireline communications, especially for communication between microprocessors, memories, and peripherals. A new hybrid NRZ/Multi-Tone (NRZ/MT) signaling method has been developed during the course of this research. The system-level and circuit-level analysis, design, and implementation of the proposed signaling method has been performed in the frame of this work, and the silicon measurement results have proved the efficiency and the robustness of the proposed signaling methodology for wireline interfaces. In the first part of this work, a 7.5 Gb/s hybrid NRZ/MT transceiver (TRX) for multi-drop bus (MDB) memory interfaces is designed and fabricated in 40 nm CMOS technology. Reducing the complexity of the equalization circuitry on the receiver (RX) side, the proposed architecture achieves 1 pJ/bit link efficiency for a MDB channel bearing 45 dB loss at 2.5 GHz. The measurement results of the first prototype confirm that NRZ/MT serial data TRX can offer an energy-efficient solution for MDB memory interfaces. Motivated by the satisfying results of the first prototype, in the second phase of this research we have exploited the properties of multi-tone signaling, especially orthogonality among different sub-bands, to reduce the effect of crosstalk in high-dense wireline interconnects. A four-channel transceiver has been implemented in a standard CMOS 40 nm technology in order to demonstrate the performance of NRZ/MT signaling in presence of high channel loss and strong crosstalk noise. The proposed system achieves 1 pJ/bit power efficiency, while communicating over a MDB memory channel at 36 Gb/s aggregate data rate

    An Energy-Efficient Reconfigurable Mobile Memory Interface for Computing Systems

    Get PDF
    The critical need for higher power efficiency and bandwidth transceiver design has significantly increased as mobile devices, such as smart phones, laptops, tablets, and ultra-portable personal digital assistants continue to be constructed using heterogeneous intellectual properties such as central processing units (CPUs), graphics processing units (GPUs), digital signal processors, dynamic random-access memories (DRAMs), sensors, and graphics/image processing units and to have enhanced graphic computing and video processing capabilities. However, the current mobile interface technologies which support CPU to memory communication (e.g. baseband-only signaling) have critical limitations, particularly super-linear energy consumption, limited bandwidth, and non-reconfigurable data access. As a consequence, there is a critical need to improve both energy efficiency and bandwidth for future mobile devices.;The primary goal of this study is to design an energy-efficient reconfigurable mobile memory interface for mobile computing systems in order to dramatically enhance the circuit and system bandwidth and power efficiency. The proposed energy efficient mobile memory interface which utilizes an advanced base-band (BB) signaling and a RF-band signaling is capable of simultaneous bi-directional communication and reconfigurable data access. It also increases power efficiency and bandwidth between mobile CPUs and memory subsystems on a single-ended shared transmission line. Moreover, due to multiple data communication on a single-ended shared transmission line, the number of transmission lines between mobile CPU and memories is considerably reduced, resulting in significant technological innovations, (e.g. more compact devices and low cost packaging to mobile communication interface) and establishing the principles and feasibility of technologies for future mobile system applications. The operation and performance of the proposed transceiver are analyzed and its circuit implementation is discussed in details. A chip prototype of the transceiver was implemented in a 65nm CMOS process technology. In the measurement, the transceiver exhibits higher aggregate data throughput and better energy efficiency compared to prior works

    Data Acquisition Applications

    Get PDF
    Data acquisition systems have numerous applications. This book has a total of 13 chapters and is divided into three sections: Industrial applications, Medical applications and Scientific experiments. The chapters are written by experts from around the world, while the targeted audience for this book includes professionals who are designers or researchers in the field of data acquisition systems. Faculty members and graduate students could also benefit from the book

    An Integrated Network Architecture for a High Speed Distributed Multimedia System.

    Get PDF
    Computer communication demands for higher bandwidth and smaller delays are increasing rapidly as the march into the twenty-first century gains momentum. These demands are generated by visualization applications which model complex real time phenomena in visual form, electronic document imaging and manipulation, concurrent engineering, on-line databases and multimedia applications which integrate audio, video and data. The convergence of the computer and video worlds is leading to the emergence of a distributed multimedia environment. This research investigates an integrated approach in the design of a high speed computer-video local area network for a distributed multimedia environment. The initial step in providing multimedia services over computer networks is to ensure bandwidth availability for these services. The bandwidth needs based on traffic generated in a distributed multimedia environment is computationally characterized by a model. This model is applied to the real-time problem of designing a backbone for a distributed multimedia environment at the NASA Classroom of the Future Program. The network incorporates legacy LANs and the latest high speed switching technologies. Performance studies have been conducted with different network topologies for various multimedia application scenarios to establish benchmarks for the operation of the network. In these performance studies it has been observed that network topologies play an important role in ensuring that sufficient bandwidth is available for multimedia traffic. After the implementation of the network and the performance studies, it was found that for true quality of service guarantees, some modifications will have to be made in the multimedia operating systems used in client workstations. These modifications would gather knowledge of the channel between source and destination and reserve resources for multimedia communication based on specified requirements. A scheme for reserving resources in a network consisting legacy LAN and ATM is presented to guarantee quality of service for multimedia applications
    corecore