831 research outputs found

    An Enhanced Reservation-Based MAC Protocol for IEEE 802.15.4 Networks

    Get PDF
    The IEEE 802.15.4 Medium Access Control (MAC) protocol is an enabling standard for wireless sensor networks. In order to support applications requiring dedicated bandwidth or bounded delay, it provides a reservation-based scheme named Guaranteed Time Slot (GTS). However, the GTS scheme presents some drawbacks, such as inefficient bandwidth utilization and support to a maximum of only seven devices. This paper presents eLPRT (enhanced Low Power Real Time), a new reservation-based MAC protocol that introduces several performance enhancing features in comparison to the GTS scheme. This MAC protocol builds on top of LPRT (Low Power Real Time) and includes various mechanisms designed to increase data transmission reliability against channel errors, improve bandwidth utilization and increase the number of supported devices. A motion capture system based on inertial and magnetic sensors has been used to validate the protocol. The effectiveness of the performance enhancements introduced by each of the new features is demonstrated through the provision of both simulation and experimental results

    Interference mitigation strategy design and applications for wireless sensor networks

    Get PDF
    The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard presents a very useful technology for implementing low-cost, low-power, wireless sensor networks. Its main focus, which is to applications requiring simple wireless connectivity with relaxed throughout and latency requirements, makes it suitable for connecting devices that have not been networked, such as industrial and control instrumentation equipments, agricultural equipments, vehicular equipments, and home appliances. Its usage of the license-free 2.4 GHz frequency band makes the technique successful for fast and worldwide market deployments. However, concerns about interference have arisen due to the presence of other wireless technologies using the same spectrum. Although the IEEE 802.15.4 standard has provided some mechanisms, to enhance capability to coexist with other wireless devices operating on the same frequency band, including Carrier Sensor Multiple Access (CSMA), Clear Channel Assessment (CCA), channel alignment, and low duty cycle, it is essential to design and implement adjustable mechanisms for an IEEE 802.15.4 based system integrated into a practical application to deal with interference which changes randomly over time. Among the potential interfering systems (Wi-Fi, Bluetooth, cordless phones, microwave ovens, wireless headsets, etc) which work on the same Industrial, Scientific, and Medical (ISM) frequency band, Wi-Fi systems (IEEE 802.11 technique) have attracted most concerns because of their high transmission power and large deployment in both residential and office environments. This thesis aims to propose a methodology for IEEE 802.15.4 wireless systems to adopt proper adjustment in order to mitigate the effect of interference caused by IEEE 802.11 systems through energy detection, channel agility and data recovery. The contribution of this thesis consists of five parts. Firstly, a strategy is proposed to enable IEEE 802.15.4 systems to maintain normal communications using the means of consecutive transmissions, when the system s default mechanism of retransmission is insufficient to ensure successful rate due to the occurrence of Wi-Fi interference. Secondly, a novel strategy is proposed to use a feasible way for IEEE 802.15.4 systems to estimate the interference pattern, and accordingly adjust system parameters for the purpose of achieving optimized communication effectiveness during time of interference without relying on hardware changes and IEEE 802.15.4 protocol modifications. Thirdly, a data recovery mechanism is proposed for transport control to be applied for recovering lost data by associating with the proposed strategies to ensure the data integrity when IEEE 802.15.4 systems are suffering from interference. Fourthly, a practical case is studied to discuss how to design a sustainable system for home automation application constructed on the basis of IEEE 802.15.4 technique. Finally, a comprehensive design is proposed to enable the implementation of an interference mitigation strategy for IEEE 802.15.4 based ad hoc WSNs within a structure of building fire safety monitoring system. The proposed strategies and system designs are demonstrated mainly through theoretical analysis and experimental tests. The results obtained from the experimental tests have verified that the interference caused by an IEEE 802.11 system on an IEEE 802.15.4 system can be effectively mitigated through adjusting IEEE 802.15.4 system s parameters cooperating with interference pattern estimation. The proposed methods are suitable to be integrated into a system-level solution for an IEEE 802.15.4 system to deal with interference, which is also applicable to those wireless systems facing similar interference issues to enable the development of efficient mitigation strategies

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs

    Congestion and medium access control in 6LoWPAN WSN

    Get PDF
    In computer networks, congestion is a condition in which one or more egressinterfaces are offered more packets than are forwarded at any given instant [1]. In wireless sensor networks, congestion can cause a number of problems including packet loss, lower throughput and poor energy efficiency. These problems can potentially result in a reduced deployment lifetime and underperforming applications. Moreover, idle radio listening is a major source of energy consumption therefore low-power wireless devices must keep their radio transceivers off to maximise their battery lifetime. In order to minimise energy consumption and thus maximise the lifetime of wireless sensor networks, the research community has made significant efforts towards power saving medium access control protocols with Radio Duty Cycling. However, careful study of previous work reveals that radio duty cycle schemes are often neglected during the design and evaluation of congestion control algorithms. This thesis argues that the presence (or lack) of radio duty cycle can drastically influence the performance of congestion control mechanisms. To investigate if previous findings regarding congestion control are still applicable in IPv6 over low power wireless personal area and duty cycling networks; some of the most commonly used congestion detection algorithms are evaluated through simulations. The research aims to develop duty cycle aware congestion control schemes for IPv6 over low power wireless personal area networks. The proposed schemes must be able to maximise the networks goodput, while minimising packet loss, energy consumption and packet delay. Two congestion control schemes, namely DCCC6 (Duty Cycle-Aware Congestion Control for 6LoWPAN Networks) and CADC (Congestion Aware Duty Cycle MAC) are proposed to realise this claim. DCCC6 performs congestion detection based on a dynamic buffer. When congestion occurs, parent nodes will inform the nodes contributing to congestion and rates will be readjusted based on a new rate adaptation scheme aiming for local fairness. The child notification procedure is decided by DCCC6 and will be different when the network is duty cycling. When the network is duty cycling the child notification will be made through unicast frames. On the contrary broadcast frames will be used for congestion notification when the network is not duty cycling. Simulation and test-bed experiments have shown that DCCC6 achieved higher goodput and lower packet loss than previous works. Moreover, simulations show that DCCC6 maintained low energy consumption, with average delay times while it achieved a high degree of fairness. CADC, uses a new mechanism for duty cycle adaptation that reacts quickly to changing traffic loads and patterns. CADC is the first dynamic duty cycle pro- tocol implemented in Contiki Operating system (OS) as well as one of the first schemes designed based on the arbitrary traffic characteristics of IPv6 wireless sensor networks. Furthermore, CADC is designed as a stand alone medium access control scheme and thus it can easily be transfered to any wireless sensor network architecture. Additionally, CADC does not require any time synchronisation algorithms to operate at the nodes and does not use any additional packets for the exchange of information between the nodes (For example no overhead). In this research, 10000 simulation experiments and 700 test-bed experiments have been conducted for the evaluation of CADC. These experiments demonstrate that CADC can successfully adapt its cycle based on traffic patterns in every traffic scenario. Moreover, CADC consistently achieved the lowest energy consumption, very low packet delay times and packet loss, while its goodput performance was better than other dynamic duty cycle protocols and similar to the highest goodput observed among static duty cycle configurations

    Innovative energy-efficient wireless sensor network applications and MAC sub-layer protocols employing RTS-CTS with packet concatenation

    Get PDF
    of energy-efficiency as well as the number of available applications. As a consequence there are challenges that need to be tackled for the future generation of WSNs. The research work from this Ph.D. thesis has involved the actual development of innovative WSN applications contributing to different research projects. In the Smart-Clothing project contributions have been given in the development of a Wireless Body Area Network (WBAN) to monitor the foetal movements of a pregnant woman in the last four weeks of pregnancy. The creation of an automatic wireless measurement system for remotely monitoring concrete structures was an contribution for the INSYSM project. This was accomplished by using an IEEE 802.15.4 network enabling for remotely monitoring the temperature and humidity within civil engineering structures. In the framework of the PROENEGY-WSN project contributions have been given in the identification the spectrum opportunities for Radio Frequency (RF) energy harvesting through power density measurements from 350 MHz to 3 GHz. The design of the circuits to harvest RF energy and the requirements needed for creating a WBAN with electromagnetic energy harvesting and Cognitive Radio (CR) capabilities have also been addressed. A performance evaluation of the state-of-the art of the hardware WSN platforms has also been addressed. This is explained by the fact that, even by using optimized Medium Access Control (MAC) protocols, if the WSNs platforms do not allow for minimizing the energy consumption in the idle and sleeping states, energy efficiency and long network lifetime will not be achieved. The research also involved the development of new innovative mechanisms that tries and solves overhead, one of the fundamental reasons for the IEEE 802.15.4 standard MAC inefficiency. In particular, this Ph.D. thesis proposes an IEEE 802.15.4 MAC layer performance enhancement by employing RTS/CTS combined with packet concatenation. The results have shown that the use of the RTS/CTS mechanism improves channel efficiency by decreasing the deferral time before transmitting a data packet. In addition, the Sensor Block Acknowledgment MAC (SBACK-MAC) protocol has been proposed that allows the aggregation of several acknowledgment responses in one special Block Acknowledgment (BACK) Response packet. Two different solutions are considered. The first one considers the SBACK-MAC protocol in the presence of BACK Request (concatenation) while the second one considers the SBACK-MAC in the absence of BACK Request (piggyback). The proposed solutions address a distributed scenario with single-destination and single-rate frame aggregation. The throughput and delay performance is mathematically derived under both ideal conditions (a channel environment with no transmission errors) and non ideal conditions (a channel environment with transmission errors). An analytical model is proposed, capable of taking into account the retransmission delays and the maximum number of backoff stages. The simulation results successfully validate our analytical model. For more than 7 TX (aggregated packets) all the MAC sub-layer protocols employing RTS/CTS with packet concatenation allows for the optimization of channel use in WSNs, v8-48 % improvement in the maximum average throughput and minimum average delay, and decrease energy consumption

    Practical packet combining for use with cooperative and non-cooperative ARQ schemes in wireless sensor networks

    Get PDF
    Although it is envisaged that advances in technology will follow a "Moores Law" trend for many years to come, one of the aims of Wireless Sensor Networks (WSNs) is to reduce the size of the nodes as much as possible. The issue of limited resources on current devices may therefore not improve much with future designs as a result. There is a pressing need, therefore, for simple, efficient protocols and algorithms that can maximise the use of available resources in an energy efficient manner. In this thesis an improved packet combining scheme useful on low power, resource-constrained sensor networks is developed. The algorithm is applicable in areas where currently only more complex combining approaches are used. These include cooperative communications and hybrid-ARQ schemes which have been shown to be of major benefit for wireless communications. Using the packet combining scheme developed in this thesis more than an 85% reduction in energy costs are possible over previous, similar approaches. Both simulated and practical experiments are developed in which the algorithm is shown to offer up to approximately 2.5 dB reduction in the required Signal-to-Noise ratio (SNR) for a particular Packet Error Rate (PER). This is a welcome result as complex schemes, such as maximal-ratio combining, are not implementable on many of the resource constrained devices under consideration. A motivational side study on the transitional region is also carried out in this thesis. This region has been shown to be somewhat of a problem for WSNs. It is characterised by variable packet reception rate caused by a combination of fading and manufacturing variances in the radio receivers. Experiments are carried out to determine whether or not a spread-spectrum architecture has any effect on the size of this region, as has been suggested in previous work. It is shown that, for the particular setup tested, the transitional region still has significant extent even when employing a spread-spectrum architecture. This result further motivates the need for the packet combining scheme developed as it is precisely in zones such as the transitional region that packet combining will be of most benefit

    Goodbye, ALOHA!

    Get PDF
    ©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The vision of the Internet of Things (IoT) to interconnect and Internet-connect everyday people, objects, and machines poses new challenges in the design of wireless communication networks. The design of medium access control (MAC) protocols has been traditionally an intense area of research due to their high impact on the overall performance of wireless communications. The majority of research activities in this field deal with different variations of protocols somehow based on ALOHA, either with or without listen before talk, i.e., carrier sensing multiple access. These protocols operate well under low traffic loads and low number of simultaneous devices. However, they suffer from congestion as the traffic load and the number of devices increase. For this reason, unless revisited, the MAC layer can become a bottleneck for the success of the IoT. In this paper, we provide an overview of the existing MAC solutions for the IoT, describing current limitations and envisioned challenges for the near future. Motivated by those, we identify a family of simple algorithms based on distributed queueing (DQ), which can operate for an infinite number of devices generating any traffic load and pattern. A description of the DQ mechanism is provided and most relevant existing studies of DQ applied in different scenarios are described in this paper. In addition, we provide a novel performance evaluation of DQ when applied for the IoT. Finally, a description of the very first demo of DQ for its use in the IoT is also included in this paper.Peer ReviewedPostprint (author's final draft
    • 

    corecore