607 research outputs found

    AngelCast: cloud-based peer-assisted live streaming using optimized multi-tree construction

    Full text link
    Increasingly, commercial content providers (CPs) offer streaming solutions using peer-to-peer (P2P) architectures, which promises significant scalabil- ity by leveraging clients’ upstream capacity. A major limitation of P2P live streaming is that playout rates are constrained by clients’ upstream capac- ities – typically much lower than downstream capacities – which limit the quality of the delivered stream. To leverage P2P architectures without sacri- ficing quality, CPs must commit additional resources to complement clients’ resources. In this work, we propose a cloud-based service AngelCast that enables CPs to complement P2P streaming. By subscribing to AngelCast, a CP is able to deploy extra resources (angel), on-demand from the cloud, to maintain a desirable stream quality. Angels do not download the whole stream, nor are they in possession of it. Rather, angels only relay the minimal fraction of the stream necessary to achieve the desired quality. We provide a lower bound on the minimum angel capacity needed to maintain a desired client bit-rate, and develop a fluid model construction to achieve it. Realizing the limitations of the fluid model construction, we design a practical multi- tree construction that captures the spirit of the optimal construction, and avoids its limitations. We present a prototype implementation of AngelCast, along with experimental results confirming the feasibility of our service.Supported in part by NSF awards #0720604, #0735974, #0820138, #0952145, #1012798 #1012798 #1430145 #1414119. (0720604 - NSF; 0735974 - NSF; 0820138 - NSF; 0952145 - NSF; 1012798 - NSF; 1430145 - NSF; 1414119 - NSF

    Semi-fluid: A Content Distribution Model For Faster Dissemination Of Data

    Get PDF
    Tesis ini mencadangkan serta melaksanakan suatu model agihan kandungan bagi mengurangkan atau meminimumkan kelengahan penyaluran data sebaya. Buat masa ini, agihan kandungan dalam rangkaian tindihan-atas adalah berdasarkan dua model berikut: model Kelulan dan model Bendalir. This thesis proposes and implements a novel content distribution model for reducing or minimizing delay in data dissemination

    Bandwidth allocation in BitTorrent-like VoD systems under flashcrowds

    Get PDF

    Optimizing on-demand resource deployment for peer-assisted content delivery

    Full text link
    Increasingly, content delivery solutions leverage client resources in exchange for services in a pee-to-peer (P2P) fashion. Such peer-assisted service paradigm promises significant infrastructure cost reduction, but suffers from the unpredictability associated with client resources, which is often exhibited as an imbalance between the contribution and consumption of resources by clients. This imbalance hinders the ability to guarantee a minimum service fidelity of these services to clients especially for real-time applications where content can not be cached. In this thesis, we propose a novel architectural service model that enables the establishment of higher fidelity services through (1) coordinating the content delivery to efficiently utilize the available resources, and (2) leasing the least additional cloud resources, available through special nodes (angels) that join the service on-demand, and only if needed, to complement the scarce resources available through clients. While the proposed service model can be deployed in many settings, this thesis focuses on peer-assisted content delivery applications, in which the scarce resource is typically the upstream capacity of clients. We target three applications that require the delivery of real-time as opposed to stale content. The first application is bulk-synchronous transfer, in which the goal of the system is to minimize the maximum distribution time - the time it takes to deliver the content to all clients in a group. The second application is live video streaming, in which the goal of the system is to maintain a given streaming quality. The third application is Tor, the anonymous onion routing network, in which the goal of the system is to boost performance (increase throughput and reduce latency) throughout the network, and especially for clients running bandwidth-intensive applications. For each of the above applications, we develop analytical models that efficiently allocate the already available resources. They also efficiently allocate additional on-demand resource to achieve a certain level of service. Our analytical models and efficient constructions depend on some simplifying, yet impractical, assumptions. Thus, inspired by our models and constructions, we develop practical techniques that we incorporate into prototypical peer-assisted angel-enabled cloud services. We evaluate these techniques through simulation and/or implementation

    Optimizing on-demand resource deployment for peer-assisted content delivery (PhD thesis)

    Full text link
    Increasingly, content delivery solutions leverage client resources in exchange for service in a peer-to-peer (P2P) fashion. Such peer-assisted service paradigms promise significant infrastructure cost reduction, but suffer from the unpredictability associated with client resources, which is often exhibited as an imbalance between the contribution and consumption of resources by clients. This imbalance hinders the ability to guarantee a minimum service fidelity of these services to the clients. In this thesis, we propose a novel architectural service model that enables the establishment of higher fidelity services through (1) coordinating the content delivery to optimally utilize the available resources, and (2) leasing the least additional cloud resources, available through special nodes (angels) that join the service on-demand, and only if needed, to complement the scarce resources available through clients. While the proposed service model can be deployed in many settings, this thesis focuses on peer-assisted content delivery applications, in which the scarce resource is typically the uplink capacity of clients. We target three applications that require the delivery of fresh as opposed to stale content. The first application is bulk-synchronous transfer, in which the goal of the system is to minimize the maximum distribution time -- the time it takes to deliver the content to all clients in a group. The second application is live streaming, in which the goal of the system is to maintain a given streaming quality. The third application is Tor, the anonymous onion routing network, in which the goal of the system is to boost performance (increase throughput and reduce latency) throughout the network, and especially for bandwidth-intensive applications. For each of the above applications, we develop mathematical models that optimally allocate the already available resources. They also optimally allocate additional on-demand resource to achieve a certain level of service. Our analytical models and efficient constructions depend on some simplifying, yet impractical, assumptions. Thus, inspired by our models and constructions, we develop practical techniques that we incorporate into prototypical peer-assisted angel-enabled cloud services. We evaluate those techniques through simulation and/or implementation. (Major Advisor: Azer Bestavros
    corecore