833 research outputs found

    Magnetocardiography with a modular spin-exchange relaxation free atomic magnetometer array

    Full text link
    We present a portable four-channel atomic magnetometer array operating in the spin exchange relaxation-free regime. The magnetometer array has several design features intended to maximize its suitability for biomagnetic measurement, specifically foetal magnetocardiography, such as a compact modular design, and fibre coupled lasers. The modular design allows the independent positioning and orientation of each magnetometer, in principle allowing for non-planar array geometries. Using this array in a magnetically shielded room, we acquire adult magnetocadiograms. These measurements were taken with a 6-11 fT Hz^(-1/2) single-channel baseline sensitivity that is consistent with the independently measured noise level of the magnetically shielded room.Comment: 15 pages, 5 figure

    Recognition of elementary arm movements using orientation of a tri-axial accelerometer located near the wrist

    No full text
    In this paper we present a method for recognising three fundamental movements of the human arm (reach and retrieve, lift cup to mouth, rotation of the arm) by determining the orientation of a tri-axial accelerometer located near the wrist. Our objective is to detect the occurrence of such movements performed with the impaired arm of a stroke patient during normal daily activities as a means to assess their rehabilitation. The method relies on accurately mapping transitions of predefined, standard orientations of the accelerometer to corresponding elementary arm movements. To evaluate the technique, kinematic data was collected from four healthy subjects and four stroke patients as they performed a number of activities involved in a representative activity of daily living, 'making-a-cup-of-tea'. Our experimental results show that the proposed method can independently recognise all three of the elementary upper limb movements investigated with accuracies in the range 91–99% for healthy subjects and 70–85% for stroke patients

    Magnetic sensors and gradiometers for detection of objects

    Get PDF
    DisertačnĂ­ prĂĄce popisuje vĂœvoj novĂœch detekčnĂ­ch zaƙízenĂ­ s anizotropnĂ­mi magnetorezistoryThis thesis describes development of innovative sensor systems based on anisotropi

    Triaxial digital fluxgate magnetometer for NASA applications explorer mission: Results of tests of critical elements

    Get PDF
    Tests performed to prove the critical elements of the triaxial digital fluxgate magnetometer design were described. A method for improving the linearity of the analog to digital converter portion of the instrument was studied in detail. A sawtooth waveform was added to the signal being measured before the A/D conversion, and averaging the digital readings over one cycle of the sawtooth. It was intended to reduce bit error nonlinearities present in the A/D converter which could be expected to be as much as 16 gamma if not reduced. No such nonlinearities were detected in the output of the instrument which included the feature designed to reduce these nonlinearities. However, a small scale nonlinearity of plus or minus 2 gamma with a 64 gamma repetition rate was observed in the unit tested. A design improvement intended to eliminate this small scale nonlinearity was examined

    Magnetometer calibration using inertial sensors

    Full text link
    In this work we present a practical algorithm for calibrating a magnetometer for the presence of magnetic disturbances and for magnetometer sensor errors. To allow for combining the magnetometer measurements with inertial measurements for orientation estimation, the algorithm also corrects for misalignment between the magnetometer and the inertial sensor axes. The calibration algorithm is formulated as the solution to a maximum likelihood problem and the computations are performed offline. The algorithm is shown to give good results using data from two different commercially available sensor units. Using the calibrated magnetometer measurements in combination with the inertial sensors to determine the sensor's orientation is shown to lead to significantly improved heading estimates.Comment: 19 pages, 8 figure

    Quaternionic Attitude Estimation with Inertial Measuring Unit for Robotic and Human Body Motion Tracking using Sequential Monte Carlo Methods with Hyper-Dimensional Spherical Distributions

    Get PDF
    This dissertation examined the inertial tracking technology for robotics and human tracking applications. This is a multi-discipline research that builds on the embedded system engineering, Bayesian estimation theory, software engineering, directional statistics, and biomedical engineering. A discussion of the orientation tracking representations and fundamentals of attitude estimation are presented briefly to outline the some of the issues in each approach. In addition, a discussion regarding to inertial tracking sensors gives an insight to the basic science and limitations in each of the sensing components. An initial experiment was conducted with existing inertial tracker to study the feasibility of using this technology in human motion tracking. Several areas of improvement were made based on the results and analyses from the experiment. As the performance of the system relies on multiple factors from different disciplines, the only viable solution is to optimize the performance in each area. Hence, a top-down approach was used in developing this system. The implementations of the new generation of hardware system design and firmware structure are presented in this dissertation. The calibration of the system, which is one of the most important factors to minimize the estimation error to the system, is also discussed in details. A practical approach using sequential Monte Carlo method with hyper-dimensional statistical geometry is taken to develop the algorithm for recursive estimation with quaternions. An analysis conducted from a simulation study provides insights to the capability of the new algorithms. An extensive testing and experiments was conducted with robotic manipulator and free hand human motion to demonstrate the improvements with the new generation of inertial tracker and the accuracy and stability of the algorithm. In addition, the tracking unit is used to demonstrate the potential in multiple biomedical applications including kinematics tracking and diagnosis instrumentation. The inertial tracking technologies presented in this dissertation is aimed to use specifically for human motion tracking. The goal is to integrate this technology into the next generation of medical diagnostic system

    The diagnostics subsystem on board LISA PathFinder and LISA

    Full text link
    The Data and Diagnostics Subsystem of the LTP hardware and software are at present essentially ready for delivery. In this presentation we intend to describe the scientific and technical aspects of this subsystem, which includes thermal diagnostics, magnetic diagnostics and a Radiation Monitor, as well as the prospects for their integration within the rest of the LTP. We also sketch a few lines of progress recently opened up towards the more demanding diagnostics requirements which will be needed for LISA.Comment: 11 pages, 5 figures, pdflatex, prepared for the Proceedings of the 7th International LISA Symposium (Barcelona, Spain, 16-20 June-2008), submitted to Classical and Quantum Gravit
    • 

    corecore