196 research outputs found

    Nonlinear inverse synthesis technique for optical links with lumped amplification

    Get PDF
    The nonlinear inverse synthesis (NIS) method, in which information is encoded directly onto the continuous part of the nonlinear signal spectrum, has been proposed recently as a promising digital signal processing technique for combating fiber nonlinearity impairments. However, because the NIS method is based on the integrability property of the lossless nonlinear Schrödinger equation, the original approach can only be applied directly to optical links with ideal distributed Raman amplification. In this paper, we propose and assess a modified scheme of the NIS method, which can be used effectively in standard optical links with lumped amplifiers, such as, erbium-doped fiber amplifiers (EDFAs). The proposed scheme takes into account the average effect of the fiber loss to obtain an integrable model (lossless path-averaged model) to which the NIS technique is applicable. We found that the error between lossless pathaveraged and lossy models increases linearly with transmission distance and input power (measured in dB). We numerically demonstrate the feasibility of the proposed NIS scheme in a burst mode with orthogonal frequency division multiplexing (OFDM) transmission scheme with advanced modulation formats (e.g., QPSK, 16QAM, and 64QAM), showing a performance improvement up to 3.5 dB; these results are comparable to those achievable with multi-step per span digital backpropagation

    Space-division Multiplexed Optical Transmission enabled by Advanced Digital Signal Processing

    Get PDF

    Periodic nonlinear Fourier transform for fiber-optic communications, Part I:theory and numerical methods

    Get PDF
    In this work, we introduce the periodic nonlinear Fourier transform (PNFT) method as an alternative and efficacious tool for compensation of the nonlinear transmission effects in optical fiber links. In the Part I, we introduce the algorithmic platform of the technique, describing in details the direct and inverse PNFT operations, also known as the inverse scattering transform for periodic (in time variable) nonlinear Schrödinger equation (NLSE). We pay a special attention to explaining the potential advantages of the PNFT-based processing over the previously studied nonlinear Fourier transform (NFT) based methods. Further, we elucidate the issue of the numerical PNFT computation: we compare the performance of four known numerical methods applicable for the calculation of nonlinear spectral data (the direct PNFT), in particular, taking the main spectrum (utilized further in Part II for the modulation and transmission) associated with some simple example waveforms as the quality indicator for each method. We show that the Ablowitz-Ladik discretization approach for the direct PNFT provides the best performance in terms of the accuracy and computational time consumption

    Linear and Nonlinear Frequency-Division Multiplexing

    Get PDF
    Two signal multiplexing schemes for optical fiber communication are considered: Wavelength-division multiplexing (WDM) and nonlinear frequency-division multiplexing (NFDM), based on the nonlinear Fourier transform. Achievable information rates (AIRs) of NFDM and WDM are compared in a network scenario with an ideal lossless model of the optical fiber in the defocusing regime. It is shown that the NFDM AIR is greater than the WDM AIR subject to a bandwidth and average power constraint, in a representative system with one symbol per user. The improvement results from nonlinear signal multiplexing
    corecore