446 research outputs found

    Experimental demonstration of generalised space shift keying for visible light communication

    Get PDF
    A low complexity generalised space shift keying (GSSK) experimental set-up for visible light communication (VLC) is demonstrated. The GSSK encoder is implemented in a field programmable gate array (FPGA) board. No digitalto-analog converter (DAC) is required and up to 16 output channels are supported which greatly exceeds that of an arbitrary waveform generator (AWG). A 4 × 4 Gallium Nitride (GaN) micro-LED array is used as transmitter while 4 avalanche photo diode (APD) receiver boards are acting as receivers. GSSK exploits the natural differences between the multiple communication links. The bit error ratio (BER) performances are evaluated for different transmitter and receiver arrangements. It is also shown that how different receiver positions and increasing receiver number will affect the BER performance. The bit error performance greatly depends on the dissimilarity of the channel gains. A spectral efficiency of 16 bits/symbol is achieved by using all 16 micro-LEDs and 4 receivers. The implementation of the experiment is introduced in detail and experimental results are given

    Spatial and wavelength division multiplexing for high-speed VLC systems: An overview

    Get PDF
    White light emitting diodes (LEDs) are becoming the primary source of illumination for the home and office environment. These LEDs can be intensity modulated to transmit high-speed data via an optical carrier. As a result, there is a paradigm shift in indoor wireless communication as the illumination infrastructure can be reused for data communications. It is widely expected that visible light communication (VLC) system will play a significant role in realizing the high-speed data communication envisaged for 5G connectivity. The goal of VLC systems is to provide a reliable and ubiquitous communication link that is an order of magnitude faster than current radio frequency (RF) links. In order to support the high data rates required for the current and future generations of communication systems, a number of techniques were explored for VLC by a number of research groups worldwide. This paper provides an overview of spatial and wavelength division multiplexing that has enabled multi-Gb/s transmission speeds in VLC using low bandwidth LEDs

    Practical implementation of multiple-input multiple-output visible light communication systems

    Get PDF
    Wireless data transmission occurs everywhere and the global data traffic is growing rapidly. Current radio frequency (RF) spectrum resource is becoming saturated and our current RF based wireless communication system will not meet the demands for data traffic in the future. Research efforts have been put into increasing the spectral efficiency of existing RF networks. Techniques such as multiple-input multiple-output (MIMO), have been well studied. However, it is still insufficient for the rapid growth of the wireless data traffic. The visible light (VL) spectrum is over 1000 times wider than the size of the entire 300 GHz RF spectrum, therefore, it is a viable alternative resource. The spread of light emitting diode (LED) lighting infrastructures provides a good opportunity for visible light communication (VLC). VLC turns the LEDs into high speed wireless data transmitter while retaining their illumination function. VLC has drawn much attention in recent years. MIMO techniques have also been studied in VLC. However, there have only been a few studies that compared practical MIMO VLC systems with theoretical studies. In this thesis, several practical implementations of the MIMO VLC system have been presented. First, a generalised space shift keying (GSSK) system, which is a simple form of spatial modulation (SM), has been presented. The performance of the field programmable gate array (FPGA) based real-time system has been studied against different transmitter (Tx) and receiver (Rx) numbers. The performance against mobility has also been evaluated. Up to 16 transmitters have been used and the result shows high spectral efficiency is achievable with the low complexity implementation of GSSK. Second, an investigation of an ultra-high speed wavelength division multiplexing (WDM) VLC system using inexpensive, low-complexity front-end components has been developed. We have used ordinary off-the-shelf red, green, blue and yellow (RGBY) LEDs in surface-mount technology (SMT). The result shows that a data rate of over 15 Gbits/s can be achieved by using proper optimising procedures on the inexpensive commercially available components. This study has confirmed the potential of high achievable capacities of VLC systems. Third, the first MIMO VLC system using organic photovoltaics (OPVs) has been implemented featuring simultaneous data communication and energy harvesting. Record data rates of 102 Mbits/s for a single pixel and 146 Mbits/s for a 2-by-2 MIMO set-up have been presented. The first system model for MIMO OPV VLC system has been proposed. The model has been validated with experimental results. The scalability of the system has also been discussed

    A Multi-CAP Visible-Light Communications System With 4.85-b/s/Hz Spectral Efficiency

    Get PDF
    In this paper, we experimentally demonstrate a multiband carrierless amplitude and phase modulation format for the first time in VLC. We split a conventional carrierless amplitude and phase modulated signal into m subcarriers in order to protect from the attenuation experienced at high frequencies in low-pass VLC systems. We investigate the relationship between throughput/spectral efficiency and m, where m = {10, 8, 6, 4, 2, 1} subcarriers over a fixed total signal bandwidth of 6.5 MHz. We show that transmission speeds (spectral efficiencies) of 31.53 (4.85), 30.88 (4.75), 25.40 (3.90), 23.65 (3.60), 15.78 (2.40), and 9.04 (1.40) Mb/s (b/s/Hz) can be achieved for the listed values of m, respectively

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Sparsity Signal Detection for Indoor GSSK-VLC System

    Get PDF
    In this paper, the signal detection problem in indoor visible light communication (VLC) system aided by generalized space shift keying (GSSK) is modeled as a sparse signal reconstruction problem, which has lower computational complexity by exploiting the sparse reconstruction algorithms in compressed sensing (CS). In order to satisfy the measurement matrix property to perform sparse signal reconstruction, a preprocessing approach of measurement matrix is proposed based on singular value decomposition (SVD), which theoretically guarantees the feasibility of utilizing CS based sparse signal detection method in indoor GSSK-VLC system. Then, by adopting classical orthogonal matching pursuit (OMP) algorithm and compressed sampling matching pursuit (CoSaMP) algorithm, the GSSK signals are efficiently detected in the considered indoor GSSK-VLC system. Furthermore, a more efficient detection algorithm combined with OMP and maximum likelihood (ML) is also presented especially for SSK scenario. Finally, the effectiveness of the proposed sparsity aided detection algorithms in indoor GSSK-VLC system are verified by computer simulations. The results show that the proposed algorithms can achieve better bit error rate (BER) and lower computation complexity than ML based detection method. Specifically, a signal-to-noise ratio (SNR) gain as high as 12 dB is observed in the SSK scenario and about 5 dB in case of a GSSK scenario upon employing our proposed detection methods

    An overview of outdoor visible light communications

    Get PDF
    Abstract: In visible light communications (VLC) technology, the outdoor applications are less explored when compared to those indoors. This is due to the fact that: (i) the dual use of light emitting diodes (LEDs) is not always practicable in the outdoor VLC environment; (ii) the level of interference and noise is considerably higher in outdoor VLC; (iii) many other communication technologies are available to be used which, due to their specific characteristics, adapt better to the outdoor environment when compared to VLC technology. Nevertheless, several outdoor VLC applications have been identified. They include and are not limited to building-to-building (B2B), vehicle-to-vehicle (V2V) and road-to-vehicle (R2V) communications. Deploying light fidelity (Li-Fi) using street and park lights is also feasible. Finally, some applications exploit the ability of solar panels to simultaneously harvest the electrical energy and serve as a VLC receiving antenna. The implementation of these communication systems faces lots of challenges. Most of them are related to environmental factors such as fog, rain, sunlight, haze, snow, dust, and atmospheric disturbances. Some challenges are based on parameters such as the geometrical aspect of the light diffusion, which is Lambertian in most cases. These challenges contribute to lower interest in outdoor VLC to date. However, the environment presents several opportunities. In this article, we explore the outdoor VLC environment, review and present some promising applications selected from the literature. Furthermore, we underline likely research opportunities based on the actual state-of-the-art and our outdoor VLC characterisation experiments

    Enhanced energy and spectrum efficiency in visible light communications

    Get PDF
    In recent years, there has been a surge in data traffic, leading to the investigation of using optical frequencies in conjunction with radio frequency (RF) wireless communication systems. One such technology is visible light communication (VLC), which uses light-emitting diodes (LEDs) in the visible light spectrum to transmit data. VLC has gained popularity for short-range wireless connections due to its energy efficiency, low-cost, and wide availability of front-end devices. However, one of the main challenges in designing a VLC system is improving its energy and spectral efficiency. This thesis aims to investigate techniques and determine the most effective methods for enhancing the energy and spectral efficiency of VLC systems. The thesis examined methods for optimising the bias point of an LED to benefit from increasing bandwidth at higher driving current while minimising the resulting signal distortion. The approaches are based on allowing for some nonlinear distortion or reducing signal swing/signal-to-noise ratio (SNR) while benefiting from higher bandwidth at higher driving currents. A framework is presented to estimate the attainable capacity under both conditions. Simulation results showed that the optimal bias point does not lie in the middle of the dynamic range. This was verified through a PAM-based VLC experiment, which showed that the transmission rate can be increased by choosing the optimal bias current instead of the midpoint of the linear range. Subsequently, VLC with probabilistic shaping (PS) is studied to optimise the distribution of source symbols and improve system performance. In this study, the error performance of PS is analysed, and closed-form analytical expressions are provided. The results show that PS outperforms the conventional uniform distribution and significantly reduces the required SNR to achieve a certain error probability. To demonstrate the practical application of PS in VLC, it was implemented in conjunction with optical orthogonal frequency-division multiplexing (OFDM) modulation. This allowed for continuous and adaptive loading of information bits to the channel response, resulting in an efficient use of available modulation bandwidth and transmission rates close to the channel capacity limits. In the two experimental demonstrations, a single low-power LED and a wavelength-division multiplexing (WDM) system using three off-the-shelf LEDs were used to achieve bit rates of 1.13~Gbps and 10.81~Gbps, respectively, representing increases of 27.13\% and 25.7\% over the traditional bit-power loading technique. Finally, an alternative approach towards enhancing the energy of VLC systems is introduced using frequency shift chirp modulation (FSCM). The error performance of FSCM was analysed in different types of channels, and a proof-of-concept experiment was conducted to demonstrate its potential use in VLC systems. FSCM offers improved robustness in band-limited, frequency-selective channels compared to other modulation techniques. This makes it a promising choice for integrating into VLC systems, particularly in low-power and low-rate application scenarios
    • …
    corecore