669 research outputs found

    A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

    Get PDF
    The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined

    Doubly Orthogonal Wavelet Packets for Multi-Users Indoor Visible Light Communication Systems

    Get PDF
    Visible Light Communication (VLC) is a data communication technology that modulates the intensity of the light to transmit the information mostly by means of Light Emitting Diodes (LEDs). The data rate is mainly throttled by the limited bandwidth of the LEDs. To combat, Multi-carrier Code Division Multiple Access (MC-CDMA) is a favorable technique for achieving higher data rates along with reduced Inter-Symbol Interference (ISI) and easy access to multi-users at the cost of slightly reduced compromised spectral efficiency and Multiple Access Interference (MAI). In this article, a multi-user VLC system is designed using a Discrete Wavelet Transform (DWT) that eradicates the use of cyclic prefix due to the good orthogonality and time-frequency localization properties of wavelets. Moreover, the design also comprises suitable signature codes, which are generated by employing double orthogonality depending upon Walsh codes and Wavelet Packets. The proposed multi-user system is simulated in MATLAB software and its overall performance is assessed using line-of-sight (LoS) and non-line-of-sight (NLoS) configurations. Furthermore, two sub-optimum multi-users detection schemes such as zero forcing (ZF) and minimum-mean-square-error (MMSE) are also used at the receiver. The simulated results illustrate that the doubly orthogonal signature waveform-based DWT-MC-CDMA with MMSE detection scheme outperforms the Walsh code-based multi-user system

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC

    Non-Orthogonal Narrowband Internet of Things: A Design for Saving Bandwidth and Doubling the Number of Connected Devices

    Get PDF
    IEEE Narrowband IoT (NB-IoT) is a low power wide area network (LPWAN) technique introduced in 3GPP release 13. The narrowband transmission scheme enables high capacity, wide coverage and low power consumption communications. With the increasing demand for services over the air, wireless spectrum is becoming scarce and new techniques are required to boost the number of connected devices within a limited spectral resource to meet the service requirements. This work provides a compressed signal waveform solution, termed fast-orthogonal frequency division multiplexing (Fast-OFDM), to double potentially the number of connected devices by compressing occupied bandwidth of each device without compromising data rate and bit error rate (BER) performance. Simulation is firstly evaluated for the Fast-OFDM with comparisons to single-carrier-frequency division multiple access (SC-FDMA). Results indicate the same performance for both systems in additive white Gaussian noise (AWGN) channel. Experimental measurements are also presented to show the bandwidth saving benefits of Fast-OFDM. It is shown that in a line-of-sight (LOS) scenario, Fast-OFDM has similar performance as SC-FDMA but with 50% bandwidth saving. This research paves the way for extended coverage, enhanced capacity and improved data rate of NB-IoT in 5th generation (5G) new radio (NR) networks

    Throughput and Link Design Choices for Communication over LED Optical Wireless Channels

    Get PDF

    Optical MIMO communication systems under illumination constraints

    Get PDF
    Technology for wireless information access has enabled innovation of 'smart' portable consumer devices. These have been widely adopted and have become an integral part of our daily lives. They need ubiquitous connectivity to the internet to provide value added services, maximize their functionality and create a smarter world to live in. Cisco's visual networking index currently predicts wireless data consumption to increase by 61% per year. This will put additional stress on the already stressed wireless access network infrastructure creating a phenomenon called 'spectrum crunch'. At the same time, the solid state devices industry has made remarkable advances in energy efficient light-emitting-diodes (LED). The lighting industry is rapidly adopting LEDs to provide illumination in indoor spaces. Lighting fixtures are positioned to support human activities and thus are well located to act as wireless access points. The visible spectrum (380 nm - 780 nm) is yet unregulated and untapped for wireless access. This provides unique opportunity to upgrade existing lighting infrastructure and create a dense grid of small cells by using this additional 'optical' wireless bandwidth. Under the above model, lighting fixtures will service dual missions of illumination and access points for optical wireless communication (OWC). This dissertation investigates multiple-input multiple-output (MIMO) optical wireless broadcast system under unique constraints imposed by the optical channel and illumination requirements. Sample indexed spatial orthogonal frequency division multiplexing (SIS-OFDM) and metameric modulation (MM) are proposed to achieve higher spectral efficiency by exploiting dimensions of space and color respectively in addition to time and frequency. SIS-OFDM can provide significant additional spectral efficiency of up to (Nsc/2 - 1) x k bits/sym where Nsc is total number of subcarriers and k is number of bits per underlying spatial modulation symbol. MM always generates the true requested illumination color and has the potential to provide better color rendering by incorporating multiple LEDs. A normalization framework is then developed to analyze performance of optical MIMO imaging systems. Performance improvements of up to 45 dB for optical systems have been achieved by decorrelating spatially separate links by incorporating an imaging receiver. The dissertation also studies the impact of visual perception on performance of color shift keying as specified in IEEE 802.15.7 standard. It shows that non-linearity for a practical system can have a performance penalty of up to 15 dB when compared to the simplified linear system abstraction as proposed in the standard. Luminous-signal-to-noise ratio, a novel metric is introduced to compare performance of optical modulation techniques operating at same illumination intensity. The dissertation then introduces singular value decomposition based OWC system architecture to incorporate illumination constraints independent of communication constraints in a MIMO system. It then studies design paradigm for a multi-colored wavelength division multiplexed indoor OWC system
    corecore