409 research outputs found

    Particle Filter Design Using Importance Sampling for Acoustic Source Localisation and Tracking in Reverberant Environments

    Get PDF
    Sequential Monte Carlo methods have been recently proposed to deal with the problem of acoustic source localisation and tracking using an array of microphones. Previous implementations make use of the basic bootstrap particle filter, whereas a more general approach involves the concept of importance sampling. In this paper, we develop a new particle filter for acoustic source localisation using importance sampling, and compare its tracking ability with that of a bootstrap algorithm proposed previously in the literature. Experimental results obtained with simulated reverberant samples and real audio recordings demonstrate that the new algorithm is more suitable for practical applications due to its reinitialisation capabilities, despite showing a slightly lower average tracking accuracy. A real-time implementation of the algorithm also shows that the proposed particle filter can reliably track a person talking in real reverberant rooms.This paper was performed while Eric A. Lehmann was working with National ICT Australia. National ICT Australia is funded by the Australian Government’s Department of Communications, Information Technology, and the Arts, the Australian Research Council, through Backing Australia’s Ability, and the ICT Centre of Excellence programs

    EXPERIMENTAL EVALUATION OF MODIFIED PHASE TRANSFORM FOR SOUND SOURCE DETECTION

    Get PDF
    The detection of sound sources with microphone arrays can be enhanced through processing individual microphone signals prior to the delay and sum operation. One method in particular, the Phase Transform (PHAT) has demonstrated improvement in sound source location images, especially in reverberant and noisy environments. Recent work proposed a modification to the PHAT transform that allows varying degrees of spectral whitening through a single parameter, andamp;acirc;, which has shown positive improvement in target detection in simulation results. This work focuses on experimental evaluation of the modified SRP-PHAT algorithm. Performance results are computed from actual experimental setup of an 8-element perimeter array with a receiver operating characteristic (ROC) analysis for detecting sound sources. The results verified simulation results of PHAT- andamp;acirc; in improving target detection probabilities. The ROC analysis demonstrated the relationships between various target types (narrowband and broadband), room reverberation levels (high and low) and noise levels (different SNR) with respect to optimal andamp;acirc;. Results from experiment strongly agree with those of simulations on the effect of PHAT in significantly improving detection performance for narrowband and broadband signals especially at low SNR and in the presence of high levels of reverberation

    Online Localization and Tracking of Multiple Moving Speakers in Reverberant Environments

    Get PDF
    We address the problem of online localization and tracking of multiple moving speakers in reverberant environments. The paper has the following contributions. We use the direct-path relative transfer function (DP-RTF), an inter-channel feature that encodes acoustic information robust against reverberation, and we propose an online algorithm well suited for estimating DP-RTFs associated with moving audio sources. Another crucial ingredient of the proposed method is its ability to properly assign DP-RTFs to audio-source directions. Towards this goal, we adopt a maximum-likelihood formulation and we propose to use an exponentiated gradient (EG) to efficiently update source-direction estimates starting from their currently available values. The problem of multiple speaker tracking is computationally intractable because the number of possible associations between observed source directions and physical speakers grows exponentially with time. We adopt a Bayesian framework and we propose a variational approximation of the posterior filtering distribution associated with multiple speaker tracking, as well as an efficient variational expectation-maximization (VEM) solver. The proposed online localization and tracking method is thoroughly evaluated using two datasets that contain recordings performed in real environments.Comment: IEEE Journal of Selected Topics in Signal Processing, 201

    Efficient Interferer Cancelation based on Geometrical Information of the Reverberant Environment

    Get PDF
    reserved7ISSN (online) 2219-5491 5 pagg totaliPagani, P.; Riva, D.; Antonacci, F.; Prandi, G.; Tagliasacchi, M.; Sarti, A.; Tubaro, S.Pagani, P.; Riva, Davide; Antonacci, Fabio; Prandi, Giorgio; Tagliasacchi, Marco; Sarti, Augusto; Tubaro, Stefan

    Spatial dissection of a soundfield using spherical harmonic decomposition

    Get PDF
    A real-world soundfield is often contributed by multiple desired and undesired sound sources. The performance of many acoustic systems such as automatic speech recognition, audio surveillance, and teleconference relies on its ability to extract the desired sound components in such a mixed environment. The existing solutions to the above problem are constrained by various fundamental limitations and require to enforce different priors depending on the acoustic condition such as reverberation and spatial distribution of sound sources. With the growing emphasis and integration of audio applications in diverse technologies such as smart home and virtual reality appliances, it is imperative to advance the source separation technology in order to overcome the limitations of the traditional approaches. To that end, we exploit the harmonic decomposition model to dissect a mixed soundfield into its underlying desired and undesired components based on source and signal characteristics. By analysing the spatial projection of a soundfield, we achieve multiple outcomes such as (i) soundfield separation with respect to distinct source regions, (ii) source separation in a mixed soundfield using modal coherence model, and (iii) direction of arrival (DOA) estimation of multiple overlapping sound sources through pattern recognition of the modal coherence of a soundfield. We first employ an array of higher order microphones for soundfield separation in order to reduce hardware requirement and implementation complexity. Subsequently, we develop novel mathematical models for modal coherence of noisy and reverberant soundfields that facilitate convenient ways for estimating DOA and power spectral densities leading to robust source separation algorithms. The modal domain approach to the soundfield/source separation allows us to circumvent several practical limitations of the existing techniques and enhance the performance and robustness of the system. The proposed methods are presented with several practical applications and performance evaluations using simulated and real-life dataset

    A multimodal approach to blind source separation of moving sources

    Get PDF
    A novel multimodal approach is proposed to solve the problem of blind source separation (BSS) of moving sources. The challenge of BSS for moving sources is that the mixing filters are time varying; thus, the unmixing filters should also be time varying, which are difficult to calculate in real time. In the proposed approach, the visual modality is utilized to facilitate the separation for both stationary and moving sources. The movement of the sources is detected by a 3-D tracker based on video cameras. Positions and velocities of the sources are obtained from the 3-D tracker based on a Markov Chain Monte Carlo particle filter (MCMC-PF), which results in high sampling efficiency. The full BSS solution is formed by integrating a frequency domain blind source separation algorithm and beamforming: if the sources are identified as stationary for a certain minimum period, a frequency domain BSS algorithm is implemented with an initialization derived from the positions of the source signals. Once the sources are moving, a beamforming algorithm which requires no prior statistical knowledge is used to perform real time speech enhancement and provide separation of the sources. Experimental results confirm that by utilizing the visual modality, the proposed algorithm not only improves the performance of the BSS algorithm and mitigates the permutation problem for stationary sources, but also provides a good BSS performance for moving sources in a low reverberant environment

    Video-aided model-based source separation in real reverberant rooms

    Get PDF
    Source separation algorithms that utilize only audio data can perform poorly if multiple sources or reverberation are present. In this paper we therefore propose a video-aided model-based source separation algorithm for a two-channel reverberant recording in which the sources are assumed static. By exploiting cues from video, we first localize individual speech sources in the enclosure and then estimate their directions. The interaural spatial cues, the interaural phase difference and the interaural level difference, as well as the mixing vectors are probabilistically modeled. The models make use of the source direction information and are evaluated at discrete timefrequency points. The model parameters are refined with the wellknown expectation-maximization (EM) algorithm. The algorithm outputs time-frequency masks that are used to reconstruct the individual sources. Simulation results show that by utilizing the visual modality the proposed algorithm can produce better timefrequency masks thereby giving improved source estimates. We provide experimental results to test the proposed algorithm in different scenarios and provide comparisons with both other audio-only and audio-visual algorithms and achieve improved performance both on synthetic and real data. We also include dereverberation based pre-processing in our algorithm in order to suppress the late reverberant components from the observed stereo mixture and further enhance the overall output of the algorithm. This advantage makes our algorithm a suitable candidate for use in under-determined highly reverberant settings where the performance of other audio-only and audio-visual methods is limited
    • …
    corecore