24 research outputs found

    Directional Antenna Diversity for Mobile Devices: Characterizations and Solutions

    Get PDF
    We report a first-of-its-kind realization of directional transmission for smartphone-like mobile devices using multiple passive directional antennas, supported by only one RF chain. The key is a multi-antenna system (MiDAS) and its antenna selection methods that judiciously select the right antenna for transmission. It is grounded by two measurementdriven studies regarding 1) how smartphones rotate during wireless usage in the field and 2) how orientation and rotation impact the performance of directional antennas under various propagation environments. We implement MiDAS using the WARP platform, and evaluate it usmg a computerized motor to rotate the prototype according to traces collected from smartphone users in the field. Our evaluation shows MiDAS achieves median of 3dB increase in link gain. Combined with rate adaptation and power control, MiDAS also improves goodput and power saving. MiDAS does not require any changes to the network infrastructure, and is therefore suitable for immediate deployment

    Channel quality estimation and impairment mitigation in 802.11 networks

    Get PDF
    Wireless communication has been boosted by the adoption of 802.11 as standard de facto for WLAN transmission. Born as a niche technology for providing wireless connectivity in small office/enterprise environments, 802.11 has in fact become a common and cheap access solution to the Internet, thanks to the large availability of wireless gateways (home modems, public hot-spots, community networks, and so on). Nowdays, the trend towards increasingly dense 802.11 wireless deployments is creating a real need for effective approaches for channel allocation/hopping, power control, etc. for interference mitigation while new applications such mesh networks in outdoor contexts and media distribution within the home are creating new quality of service demands that require more sophisticated approaches to radio resource allocation. The new framework of WLAN deployments require a complete understanding of channel quality at PHY and MAC layer. Goal of this thesis is to assess the MAC/PHY channel quality and mitigate the different channel impairments in 802.11 networks, both in dense/controlled indoor scenarios and emerging outdoor contexts. More specifically, chapter 1 deals with the necessary background material and gives insight into the different channel impairments/quality it can be encountered in WLAN networks. Then the thesis pursues a down/top approach: chapter 2, 3 and 4 aim at affording impairments/quality at PHY level, while chapter 5 and 6 analyse channel impairments/quality from a MAC level perspective. An important contribution of this thesis is to undisclose that some PHY layer parameters, such as the transmission power, the antenna selection, and interference mitigation scheme, have a deep impact on network performance. Since the criteria for selecting these parameters is left to the vendor specific implementations, the performance spread of most experimental results about 802.11 WLAN could be affected by vendor proprietary schemes. Particularly, in chapter 2 we find that switching transmit diversity mechanisms implemented in off-the-shelf devices with two antenna connectors can dramatically affect both performance and link quality probing mechanisms in outdoor medium-range WLAN deployments, whenever one antenna deterministically works worse than the other one. A second physical algorithm with side-effects is shown in chapter 3. Particulary the chapter shows that interference mitigation algorithms may play havoc with the link-level testbeds, since they may erroneously lower the sensitivity threshold, and thus not detect the 802.11 transmit sources. Finally, once disabled the interference mitigation algorithm — as well as any switching diversity scheme described in the previous chapter — link-level experimental assessment concludes that, unlike 802.11b, which appears a robust technology in most of the operational conditions, 802.11g may lead to inefficiencies when employed in an outdoor scenario, due to the lower multi-path tolerance of 802.11g. Since multipath is hard to predict, a novel mechanism to improve the link-distance estimation accuracy — based on CPU clock information — is outlined in chapter 4. The proposed methodology can not only be applied in localization context, but also for estimating the multi-path profile. The second part of the thesis moves the perspective to the MAC point of view and its impairments. Particularly, chapter 5 provides the design of a MAC channel quality estimator to distinguish the different types of MAC impairments and gives separate quantitative measures of the severity of each one. Since the estimator takes advantage of the native characteristics of the 802.11 protocol, the approach is suited to implementation on commodity hardware and makes available new measures that can be of direct use for rate adaptation, channel allocation, etc. Then, chapter 6 introduces a previous unknown phenomenon, the Hidden ACK, that may cause frame losses into multiple WLAN networks when a node replies with an ACK frame. Again, a solution is provided without requiring any modification to the 802.11 protocol. Whenever possible, the quantitative analysis has been led through experimental assessments with implementation on commodity hardware. This was the adopted methodology in chapter 2, 3, 4 and 5. Particularly, this has required an accurate investigation of two brands of WLAN cards, particularly the Atheros and Intel cards, and their driver/firmware, respectively MADWiFi and IPW2200, which are currently the most adopted, respectively, by researchers and layman users

    Customizing Indoor Wireless Coverage via 3D-Fabricated Reflectors

    Get PDF
    Judicious control of indoor wireless coverage is crucial in built environments. It enhances signal reception, reduces harmful interference, and raises the barrier for malicious attackers. Existing methods are either costly, vulnerable to attacks, or hard to configure. We present a low-cost, secure, and easy-to-configure approach that uses an easily-accessible, 3D-fabricated reflector to customize wireless coverage. With input on coarse-grained environment setting and preferred coverage (e.g., areas with signals to be strengthened or weakened), the system computes an optimized reflector shape tailored to the given environment. The user simply 3D prints the reflector and places it around a Wi-Fi access point to realize the target coverage. We conduct experiments to examine the efficacy and limits of optimized reflectors in different indoor settings. Results show that optimized reflectors coexist with a variety of Wi-Fi APs and correctly weaken or enhance signals in target areas by up to 10 or 6 dB, resulting to throughput changes by up to -63.3% or 55.1%

    The Myth of Spatial Reuse with Directional Antennas in Indoor Wireless Networks

    Full text link
    Abstract. Interference among co-channel users is a fundamental prob-lem in wireless networks, which prevents nearby links from operating concurrently. Directional antennas allow the radiation patterns of wire-less transmitters to be shaped to form directed beams. Conventionally, such beams are assumed to improve the spatial reuse (i.e. concurrency) in indoor wireless networks. In this paper, we use experiments in an indoor office setting of Wifi Access points equipped with directional antennas, to study their potential for interference mitigation and spatial reuse. In contrast to conventional wisdom, we observe that the interference mit-igation benefits of directional antennas are minimal. On analyzing our experimental traces we observe that directional links do not reduce inter-ference to nearby links due to the lack of signal confinement due to indoor multipath fading. We then use the insights derived from our study to de-velop an alternative approach that provides better interference reduction in indoor networks compared to directional links. Key words: Indoor wireless networks, directional antennas, spatial reuse

    Experimental and analytical evaluation of multi-user beamforming in wireless LANs

    Get PDF
    Adaptive beamforming is a. powerful approach to receive or transmit signals of interest in a spatially selective way in the presence of interference and noise. Recently, there has been renewed interest in adaptive beamforming driven by applications in wireless communications, where multiple-input multiple-output (MEMO) techniques have emerged as one of the key technologies to accommodate the high number of users as well as the increasing demand for new high data rate services. Beamforming techniques promise to increase the spectral efficiency of next generation wireless systems and are currently being incorporated in future industry standards. Although a significant amount of research has focused on theoretical capacity analysis, little is known about the performance of such systems in practice. In thesis, I experimentally and analytically evaluate the performance of adaptive beamforming techniques on the downlink channel of a wireless LAN. To this end. I present the design and implementation of the first multi-user beam-forming system and experimental framework for wireless LANs. Next, I evaluate the benefits of such system in two applications. First, I investigate the potential of beamforming to increase the unicast throughput through spatial multiplexing. Using extensive measurements in an indoor environment, I evaluate the impact of user separation distance, user selection, and user population size on the multiplexing gains of multi-user beamforming. I also evaluate the impact of outdated channel information due to mobility and environmental variation on the multiplexing gains of multi-user beamforming. Further, I investigate the potential of beamforming to eliminate interference at unwanted locations and thus increase spatial reuse. Second, I investigate the potential of adaptive beamforming for efficient wireless multicasting. I address the joint problem of adaptive beamformer design at the PHY layer and client scheduling at the MAC layer by proposing efficient algorithms that are amenable to practical implementation. Next, I present the implementation of the beamforming based multicast system on the WARP platform and compare its performance against that of omni-directional and switched beamforming based multicast. Finally, I evaluate the performance of multicast beamforming under client mobility and infrequent channel feedback, and propose solutions that increase its robustness to channel dynamics

    Mobile 5G millimeter-wave multi-antenna systems

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Universitat Politècnica de Catalunya's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.Tesi en modalitat de compendi de publicacionsMassive antenna architectures and millimeter-wave bands appear on the horizon as the enabling technologies of future broadband wireless links, promising unprecedented spectral efficiency and data rates. In the recently launched fifth generation of mobile communications, millimetric bands are already introduced but their widespread deployment still presents several feasibility issues. In particular, high-mobility environments represent the most challenging scenario when dealing with directive patterns, which are essential for the adequate reception of signals at those bands. Vehicular communications are expected to exploit the full potential of future generations due to the massive number of connected users and stringent requirements in terms of reliability, latency, and throughput while moving at high speeds. This thesis proposes two solutions to completely take advantage of multi-antenna systems in those cases: beamwidth adaptation of cellular stations when tracking vehicular users based on positioning and Doppler information and a tailored radiation diagram from a panel-based system of antennas mounted on the vehicle. Apart from cellular base stations and vehicles, a third entity that cannot be forgotten in future mobile communications are pedestrians. Past generations were developed around the figure of human users and, now, they must still be able to seamlessly connect with any other user of the network and exploit the new capabilities promised by 5G. The use of millimeter-waves is already been considered by handset manufacturers but the impact of the user (and the interaction with the phone) is drastically changed. The last part of this thesis is devoted to the study of human user dynamics and how they influence the achievable coverage with different distributed antenna systems on the phone.Les arquitectures massives d'antenes i les bandes mil·limètriques apareixen a l'horitzó com les tecnologies que impulsaran els futurs enllaços sense fils amb gran ample de banda i prometen una eficiència espectral i velocitat de transmissió sense precedents. A la recent cinquena generació de comunicacions mòbils, les bandes mil·limètriques ja en són una part constitutiva però el seu desplegament encara presenta certes dificultats. En concret, els entorns d'alta mobilitat representen el major repte quan es fan servir diagrames de radiació directius, els quals són essencials per una correcta recepció del senyal en aquestes bandes. S'espera que les comunicacions vehiculars delimitin les capacitats de les xarxes en futures generacions degut al gran nombre d'usuaris simultanis i els requeriments estrictes en termes de fiabilitat, retard i flux de dades mentre es mouen a grans velocitats. Aquesta tesi proposa dues solucions per tal d'explotar al màxim els sistemes de múltiples antenes en tals casos: un ample de feix adaptatiu de les estacions bases quan estiguin fent el seguiment d'un vehicle usuari basat en informació de la posició i el Doppler i el disseny d'un diagrama de radiació adequat al costat del vehicle basat en una estructura de múltiples panells muntats a l'estructura del mateix. A més de les estacions base i els vehicles, un tercer element que no pot ser obviat en aquests escenaris són els vianants. Les generacions anteriors van ser desenvolupades al voltant de la figura d'usuaris humans i ara han de seguir tenint la capacitat de connexió ininterrumpuda amb la resta d'usuaris i explotar les capacitats de 5G. L'ús de frequències mil·limètriques també es té en compte en la fabricació de telèfons mòbils però l'impacte de l'usuari és completament diferent. La última part de la tesis tracta l'estudi de les dinàmiques de l'usuari humà i com influeixen en la cobertura amb diferent sistemes distribuïts d'antenes.Postprint (published version

    Scheduling in a Multi-Sector Wireless Cell

    Get PDF
    In this thesis, we propose a scheduling problem for the downlink of a single cell system with multiple sectors. We formulate an optimization problem based on a generalized round robin scheme that aims at minimizing the cycle length necessary to provide one timeslot to each user, while avoiding harmful interference. Since this problem is under-constrained and might have multiple solutions, we propose a second optimization problem for which we try to find a scheduling that minimizes the cycle length while being as efficient as possible in resource utilization. Both of these problems are large integer programming problems that can be solved numerically using a commercial solver, but for real time use, efficient heuristics need to be developed. We design heuristics for these two problems and validate them by comparing their performances to the optimal solutions
    corecore