30 research outputs found

    MICROSTRUCTURAL CHARACTERIZATION AND THERMAL CYCLING RELIABILITY OF SOLDERS UNDER ISOTHERMAL AGING AND ELECTRICAL CURRENT

    Get PDF
    Solder joints on printed circuit boards provide electrical and mechanical connections between electronic devices and metallized patterns on boards. These solder joints are often the cause of failure in electronic packages. Solders age under storage and operational life conditions, which can include temperature, mechanical loads, and electrical current. Aging occurring at a constant temperature is called isothermal aging. Isothermal aging leads to coarsening of the bulk microstructure and increased interfacial intermetallic compounds at the solder-pad interface. The coarsening of the solder bulk degrades the creep properties of solders, whereas the voiding and brittleness of interfacial intermetallic compounds leads to mechanical weakness of the solder joint. Industry guidelines on solder interconnect reliability test methods recommend preconditioning the solder assemblies by isothermal aging before conducting reliability tests. The guidelines assume that isothermal aging simulates a "reasonable use period," but do not relate the isothermal aging levels with specific use conditions. Studies on the effect of isothermal aging on the thermal cycling reliability of tin-lead and tin-silver-copper solders are limited in scope, and results have been contradictory. The effect of electrical current on solder joints has been has mostly focused on current densities above 104A/cm2 with high ambient temperature (≥100oC), where electromigration, thermomigration, and Joule heating are the dominant failure mechanisms. The effect of current density below 104A/cm2 on temperature cycling fatigue of solders has not been established. This research provides the relation between isothermal aging and the thermal cycling reliability of select Sn-based solders. The Sn-based solders with 3%, 1%, and 0% silver content that have replaced tin-lead are studied and compared against tin-lead solder. The activation energy and growth exponents of the Arrhenius model for the intermetallic growth in the solders are provided. An aging metric to quantify the aging of solder joints, in terms of phase size in the solder bulk and interfacial intermetallic compound thickness at the solder-pad interface, is established. Based on the findings of thermal cycling tests on aged solder assemblies, recommendations are made for isothermal aging of solders before thermal cycling tests. Additionally, the effect of active electrical current at 103 A/cm2 on thermal cycling reliability is reported

    Microstructural and mechanical characteristics of micro-scale intermetallic compounds interconnections

    Get PDF
    Following the continually increasing demand for high-density interconnection and multilayer packaging for chips, solder bump size has decreased significantly over the years, this has led to some challenges in the reliability of interconnects. This thesis presents research into the resulting effects of miniaturization on the interconnection with Sn-solder, especially focusing on the full intermetallics (IMCs) micro-joints which appear in the 3D IC stacking packaging. Thereby, systematic studies have been conducted to study the microstructural evolution and reliability issues of Cu-Sn and Cu-Sn-Ni IMCs micro-joints. (1) Phenomenon of IMCs planar growth: The planar IMCs interlayer was asymmetric and composed of (Cu,Ni)6Sn5 mainly in Ni/Sn (2.5~5 µm)/Cu interconnect. Meanwhile, it was symmetric two-layer structure in Cu/Sn (2.5~5 µm)/Cu interconnect with the Cu3Sn fine grains underneath Cu6Sn5 cobblestone-shape-like grains for each IMCs layer. Besides, it is worth noticing that the appearance of Cu-rich whiskers (the mixture of Cu/Cu2O/SnOx/Cu6Sn5) could potentially lead to short-circuit in the cases of ultra-fine (<10 µm pitch) interconnects for the miniaturization of electronics devices. (2) Microstructural evolution process of Cu-Sn IMCs micro-joint: The simultaneous solidification of IMCs interlayer supressed the scalloped growth of Cu6Sn5 grains in Cu/Sn (2.5 µm)/Cu interconnect during the transient liquid phase (TLP) soldering process. The growth factor of Cu3Sn was in the range of 0.29~0.48 in Cu-Cu6Sn5 diffusion couple at 240~290 °C, which was impacted significantly by the type of substrates. And the subsequent homogenization process of Cu3Sn grains was found to be consistent with the description of flux-driven ripening (FDR) theory. Moreover, Kirkendall voids appeared only in the Cu3Sn layer adjacent to Cu-plated substrate, and this porous Cu3Sn micro-joint was mechanically robust during the shear test. (3) Microstructural evolution of Cu-Sn-Ni IMCs micro-joint: There was obvious inter-reaction between the interfacial reactions in Ni/Sn (1.5 µm)/Cu interconnect. The growth factor of (Cu,Ni)3Sn on Cu side was about 0.36 at 240 °C, and the reaction product on Ni side was changed from Ni3Sn4 into (Cu,Ni)6Sn5 with the increase of soldering temperature. In particular, the segregation of Ni atoms occurred along with phase transformation at 290 °C and thereby stabilized the (Cu,Ni)6Sn5 phase for the high Ni content of 20 at.%. (4) Micro-mechanical characteristics of Cu-Sn-Ni IMCs micro-joint: The Young s modulus and hardness of Cu-Sn-Ni IMCs were measured by nanoindentation test, such as 160.6±3.1 GPa/ 7.34±0.14 GPa for (Cu,Ni)6Sn5 and 183.7±4.0 GPa/ 7.38±0.46 GPa for (Cu,Ni)3Sn, respectively. Besides, in-situ nano-compression tests have been conducted on IMCs micro-cantilevers, the fracture strength turns out to be 2.46 GPa. And also, the ultimate tensile stress was calculated to be 2.3±0.7 GPa from in-situ micro-bending tests, which is not sensitive with the microstructural change of IMCs after dwelling at 290 °C

    Deposition and application of electroless Ni–W–P under bump metallisation for high temperature lead-free solder interconnects

    Get PDF
    A reliable and robust diffusion barrier, commonly known as under bump metallisation (UBM), is indispensable in solder interconnects in order to retard the interfacial reaction rate, hence the growth of intermetallic compounds (IMCs). However, electroless Ni-P coatings are not adequate to inhibit interfacial reactions effectively since the formation of columnar structure and voids in the crystalline Ni3P layer in hybrid automotive devices (operating temperature above 300ºC) can significantly deteriorate the mechanical integrity of solder joints. In this thesis, electroless Ni-W-P coatings, as an effective UBM capable to serving under high temperature (up to 450ºC), are developed, characterised and subsequently applied onto the high temperature lead-free solder interconnects. [Continues.

    Properties and behaviour of Pb-free solders in flip-chip scale solder interconnections

    Get PDF
    Due to pending legislations and market pressure, lead-free solders will replace Sn–Pb solders in 2006. Among the lead-free solders being studied, eutectic Sn–Ag, Sn–Cu and Sn–Ag–Cu are promising candidates and Sn–3.8Ag–0.7Cu could be the most appropriate replacement due to its overall balance of properties. In order to garner more understanding of lead-free solders and their application in flip-chip scale packages, the properties of lead free solders, including the wettability, intermetallic compound (IMC) growth and distribution, mechanical properties, reliability and corrosion resistance, were studied and are presented in this thesis. [Continues.

    Interfacial reactions between Sn-3.0Ag-0.5Cu Solder and Cu-coated PCB coatings

    Get PDF

    Electromigration Mechanism of Failure in Flip-Chip Solder Joints Based on Discrete Void Formation

    Get PDF
    In this investigation, SnAgCu and SN100C solders were electromigration (EM) tested, and the 3D laminography imaging technique was employed for in-situ observation of the microstructure evolution during testing. We found that discrete voids nucleate, grow and coalesce along the intermetallic compound/solder interface during EM testing. A systematic analysis yields quantitative information on the number, volume, and growth rate of voids, and the EM parameter of DZ*. We observe that fast intrinsic diffusion in SnAgCu solder causes void growth and coalescence, while in the SN100C solder this coalescence was not significant. To deduce the current density distribution, finite-element models were constructed on the basis of the laminography images. The discrete voids do not change the global current density distribution, but they induce the local current crowding around the voids: this local current crowding enhances the lateral void growth and coalescence. The correlation between the current density and the probability of void formation indicates that a threshold current density exists for the activation of void formation. There is a significant increase in the probability of void formation when the current density exceeds half of the maximum value

    An investigation into nano-particulates reinforced SAC305-based composite solders under electro- and thermo-migration conditions

    Get PDF
    With the rapid development in electronic packaging due to product miniaturisation, the size of solder joints is decreasing considerably, thus the failure of solder interconnects induced by electro-migration (EM) and thermo-migration (TM) became a reliability concern. The incorporation of foreign reinforcement can effectively improve properties of the solder alloys. However, this presents an imperative need for a further investigation to elaborate the underlying fundamentals associated with the reliability of reinforced solders. In this study, the Sn-Ag-Cu (SAC) based solder alloy powders as matrix were incorporated with Fullerene (FNS), TiC and Ni-coated graphene (NG) reinforcements to form composite solders through powder metallurgical method. These composite solders were then characterised in terms of their microstructure, physical property, solderability, followed by a systematic investigation of their performance under isothermal ageing, current stressing and large thermal gradient, respectively. The results showed that three types of reinforcements were successfully incorporated into the solder matrix; with all reinforcements added being embedded in the solder matrix or around the intermetallic compounds (IMC). The average loss of FNS and TiC particles in the solders was approximately 80% after the initial reflow, while this was only 40% for NG particles. It has been observed that β-Sn and Ag3Sn in the SAC solder alloys can be refined by adding appropriate amount of FNS and TiC, which is beneficial to the wettability with a reduced coefficient of thermal expansion (CTE) with the minimal influence on the melting point and electrical resistivity of solder alloys. For the SAC alloys without reinforcements, obvious extrusion of interfacial IMC at the anode was present after 360 hours of current (1.5×104 A/cm2) stressing, while the changes of surface profiles of all reinforced solders were unnoticeable. Under the current stressing regimes, a continuous increase of interfacial IMCs at the anode of the original SAC alloys was observed, but decreased at the cathode with stressing time. For the composite solders, both anode and cathode showed a continuous growth of interfacial IMCs; the growth rates of IMCs at the anode were greater than that at cathode. In addition, NG and TiC were found to be most effective to retard the growth of Cu3Sn IMC under current stressing. A gradient in hardness across the stressed SAC joints was present, where it was harder at anode. However, no such obvious gradient was found in SAC/FNS and SAC/NG solder joints. FNS and NG were proven to be beneficial to prolong the service life of solder joints up to approximately 7.6% and 10.4% improvements, respectively. Thermal stressing made the interfacial IMC in the original SAC joints to grow at the cold end considerably; causing serious damage at the hot end after 600 hours under temperature gradient of 1240K/cm stressing; a large number of IMCs, cracks and voids appeared in the SAC solder joints. However, a uniform increase of IMCs at both sides in the composite solders was observed without apparent damages at the interfaces under the same thermal stressing conditions, indicating an effective reduction of the elemental migration in the reinforced solders. Although there were also some voids and IMCs formed in the composite solder joints after a long-term thermal stressing, the integrity of the composite solder joints was enhanced compared with the SAC alloys. During thermal stressing, the dissolution rate of Cu atom into the SAC solder joints was estimated to be 3.1×10-6 g/h, while the values for SAC/FNS, SAC/NG and SAC/TiC were only 1.22×10-6 g/h, 1.09×10-6 g/h and 1.67×10-6 g/h, respectively

    Characterization And Corrosion Behaviour Of 96.5sn-3.0ag- 0.5cu Solder On Cu Substrate At Different Reflow Reactions

    Get PDF
    96.5Sn-3.0Ag-0.5Cu (SAC305) thin film solder exhibits different surface characteristics if compared to conventional bulk solder. In thin film solder, the actual surface is comprised of intermetallic layers whereas in the case of conventional solder, the intermetallic layers happened at the interfacial region of solder/base metal. This in turn, resulted in different surface microstructure and chemical composition. Moreover, a subtle and unstudied aspect of SAC305 in thin film characteristics was limited. Thus, the effect of solder reflow conditions at various temperatures and times were investigated. Structural and elemental characterizations indicated that Sn, Ag3Sn, and Cu6Sn5 were present in the as-deposited SAC305 thin film on Cu substrate. After solder reflow, SAC305 thin film was totally reacted and developed into Cu6Sn5 then Cu3Sn. Cu6Sn5 is located almost exclusively in the volume, whereas Cu3Sn appears as a thin uniform layer structure beneath Cu6Sn5. The Cu3Sn intermetallic layer consistently increases with increased temperature but remains within the thickness of Cu6Sn5. The corrosion behavior of bare Cu, as-deposited SAC305/Cu and as-reflowed SAC305/Cu at varying reflow temperatures was investigated by means of potentiodynamic polarization in a 6 M potassium hydroxide (KOH) solution. Bare Cu was found to possess the best corrosion resistance, whereas the as-deposited SAC305/Cu had the lowest corrosion resistance. As-reflowed SAC305/Cu with an exposed Cu3Sn layer exhibited better corrosion resistance than did Cu6Sn5. All of the samples contained the corrosion products of oxide. Bare Cu obeys the well-known duplex structure of a Cu2O/CuO, Cu(OH)2 layer. For as-reflowed SAC305/Cu, the corroded surface was also mainly composed of SnO and SnO2
    corecore