4,117 research outputs found

    A Novel Design Approach to X-Band Minkowski Reflectarray Antennas using the Full-Wave EM Simulation-based Complete Neural Model with a Hybrid GA-NM Algorithm

    Get PDF
    In this work, a novel multi-objective design optimization procedure is presented for the Minkowski Reflectarray RAs using a complete 3-D CST Microwave Studio MWS-based Multilayer Perceptron Neural Network MLP NN model including the substrate constant εr with a hybrid Genetic GA and Nelder-Mead NM algorithm. The MLP NN model provides an accurate and fast model and establishes the reflection phase of a unit Minkowski RA element as a continuous function within the input domain including the substrate 1 ≤ εr ≤ 6; 0.5mm ≤ h ≤ 3mm in the frequency between 8GHz ≤ f ≤ 12GHz. This design procedure enables a designer to obtain not only the most optimum Minkowski RA design all throughout the X- band, at the same time the optimum Minkowski RAs on the selected substrates. Moreover a design of a fully optimized X-band 15×15 Minkowski RA antenna is given as a worked example with together the tolerance analysis and its performance is also compared with those of the optimized RAs on the selected traditional substrates. Finally it may be concluded that the presented robust and systematic multi-objective design procedure is conveniently applied to the Microstrip Reflectarray RAs constructed from the advanced patches

    Wiometrics: Comparative Performance of Artificial Neural Networks for Wireless Navigation

    Full text link
    Radio signals are used broadly as navigation aids, and current and future terrestrial wireless communication systems have properties that make their dual-use for this purpose attractive. Sub-6 GHz carrier frequencies enable widespread coverage for data communication and navigation, but typically offer smaller bandwidths and limited resolution for precise estimation of geometries, particularly in environments where propagation channels are diffuse in time and/or space. Non-parametric methods have been employed with some success for such scenarios both commercially and in literature, but often with an emphasis on low-cost hardware and simple models of propagation, or with simulations that do not fully capture hardware impairments and complex propagation mechanisms. In this article, we make opportunistic observations of downlink signals transmitted by commercial cellular networks by using a software-defined radio and massive antenna array mounted on a passenger vehicle in an urban non line-of-sight scenario, together with a ground truth reference for vehicle pose. With these observations as inputs, we employ artificial neural networks to generate estimates of vehicle location and heading for various artificial neural network architectures and different representations of the input observation data, which we call wiometrics, and compare the performance for navigation. Position accuracy on the order of a few meters, and heading accuracy of a few degrees, are achieved for the best-performing combinations of networks and wiometrics. Based on the results of the experiments we draw conclusions regarding possible future directions for wireless navigation using statistical methods

    Workshop on Advanced Technologies for Planetary Instruments, part 1

    Get PDF
    This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. This volume contains papers presented at the Workshop on Advanced Technologies for Planetary Instruments on 28-30 Apr. 1993. This meeting was conceived in response to new challenges facing NASA's robotic solar system exploration program. Over the past several years, SDIO has sponsored a significant technology development program aimed, in part, at the production of instruments with these characteristics. This workshop provided an opportunity for specialists from the planetary science and DoD communities to establish contacts, to explore common technical ground in an open forum, and more specifically, to discuss the applicability of SDIO's technology base to planetary science instruments

    Edge Artificial Intelligence for Real-Time Target Monitoring

    Get PDF
    The key enabling technology for the exponentially growing cellular communications sector is location-based services. The need for location-aware services has increased along with the number of wireless and mobile devices. Estimation problems, and particularly parameter estimation, have drawn a lot of interest because of its relevance and engineers' ongoing need for higher performance. As applications expanded, a lot of interest was generated in the accurate assessment of temporal and spatial properties. In the thesis, two different approaches to subject monitoring are thoroughly addressed. For military applications, medical tracking, industrial workers, and providing location-based services to the mobile user community, which is always growing, this kind of activity is crucial. In-depth consideration is given to the viability of applying the Angle of Arrival (AoA) and Receiver Signal Strength Indication (RSSI) localization algorithms in real-world situations. We presented two prospective systems, discussed them, and presented specific assessments and tests. These systems were put to the test in diverse contexts (e.g., indoor, outdoor, in water...). The findings showed the localization capability, but because of the low-cost antenna we employed, this method is only practical up to a distance of roughly 150 meters. Consequently, depending on the use-case, this method may or may not be advantageous. An estimation algorithm that enhances the performance of the AoA technique was implemented on an edge device. Another approach was also considered. Radar sensors have shown to be durable in inclement weather and bad lighting conditions. Frequency Modulated Continuous Wave (FMCW) radars are the most frequently employed among the several sorts of radar technologies for these kinds of applications. Actually, this is because they are low-cost and can simultaneously provide range and Doppler data. In comparison to pulse and Ultra Wide Band (UWB) radar sensors, they also need a lower sample rate and a lower peak to average ratio. The system employs a cutting-edge surveillance method based on widely available FMCW radar technology. The data processing approach is built on an ad hoc-chain of different blocks that transforms data, extract features, and make a classification decision before cancelling clutters and leakage using a frame subtraction technique, applying DL algorithms to Range-Doppler (RD) maps, and adding a peak to cluster assignment step before tracking targets. In conclusion, the FMCW radar and DL technique for the RD maps performed well together for indoor use-cases. The aforementioned tests used an edge device and Infineon Technologies' Position2Go FMCW radar tool-set

    Development of Scale and Rotation Invariant Neural Network based Technique for Detection of Dielectric Contrast Concealed Targets with Millimeter Wave System

    Get PDF
    The detection of concealed targets beneath a person’s clothing from standoff distance is an important task for protection and the security of a person in a crowded place like shopping malls, airports and playground stadium, etc. The detection capability of the concealed weapon depends on a lot of factors likes, a collection of back scattered data, dielectric property and a thickness of covering cloths, the hidden object, standoff distance and the probability of false alarm owing to objectionable substances. Though active millimeter wave systems have used to detect weapons under cloths, but still more attention is required to detect the target likes a gun, knife, and matchbox. To observe such problems, active V-band (59 GHz- 61 GHz) MMW radar with the help of artificial neural network (ANN) has been demonstrated for non-metallic as well as metallic concealed target detection. To validate ANN, the signature of predefined targets is matched with the signature of validated data with the help of the correlation coefficient. The proposed technique has good capability to distinguish concealed targets under various cloths.

    Digital Predistorion of 5G Millimeter-Wave Active Phased Arrays using Artificial Neural Networks

    Get PDF
    • …
    corecore