885 research outputs found

    Design and Analysis of a Novel Trans-inverse DC-DC Converter

    Get PDF

    Suppression of line voltage related distortion in current controlled grid connected inverters

    Get PDF
    The influence of selected control strategies on the level of low-order current harmonic distortion generated by an inverter connected to a distorted grid is investigated through a combination of theoretical and experimental studies. A detailed theoretical analysis, based on the concept of harmonic impedance, establishes the suitability of inductor current feedback versus output current feedback with respect to inverter power quality. Experimental results, obtained from a purpose-built 500-W, three-level, half-bridge inverter with an L-C-L output filter, verify the efficacy of inductor current as the feedback variable, yielding an output current total harmonic distortion (THD) some 29% lower than that achieved using output current feedback. A feed-forward grid voltage disturbance rejection scheme is proposed as a means to further reduce the level of low-order current harmonic distortion. Results obtained from an inverter with inductor current feedback and optimized feed-forward disturbance rejection show a THD of just 3% at full-load, representing an improvement of some 53% on the same inverter with output current feedback and no feed-forward compensation. Significant improvements in THD were also achieved across the entire load range. It is concluded that the use of inductor current feedback and feed-forward voltage disturbance rejection represent cost–effect mechanisms for achieving improved output current quality

    High Step-Up Y-Source Inverter with Reduced DC-Link Voltage Spikes

    Get PDF

    A unipolar inverter drive for a cage induction motor

    Get PDF
    Imperial Users onl

    Power Converters in Power Electronics

    Get PDF
    In recent years, power converters have played an important role in power electronics technology for different applications, such as renewable energy systems, electric vehicles, pulsed power generation, and biomedical sciences. Power converters, in the realm of power electronics, are becoming essential for generating electrical power energy in various ways. This Special Issue focuses on the development of novel power converter topologies in power electronics. The topics of interest include, but are not limited to: Z-source converters; multilevel power converter topologies; switched-capacitor-based power converters; power converters for battery management systems; power converters in wireless power transfer techniques; the reliability of power conversion systems; and modulation techniques for advanced power converters

    Dual active bridge converters in solid state transformers

    Get PDF
    This dissertation presents a comprehensive study of Dual Active Bridge (DAB) converters for Solid State Transformers (SSTs). The first contribution is to propose an ac-ac DAB converter as a single stage SST. The proposed converter topology consists of two active H-bridges and one high-frequency transformer. Output voltage can be regulated when input voltage changes by phase shift modulation. Power is transferred from the leading bridge to the lagging bridge. It analyzes the steady-state operation and the range of zero-voltage switching. It develops a switch commutation scheme for the ac-ac DAB converters. Simulation and experiment results of a scaled down prototype are provided to verify the theoretical analysis. The second contribution is to develop a full-order continuous-time average model for dc-dc DAB converters. The transformer current in DAB converter is purely ac, making continuous-time modeling difficult. Instead, the proposed approach uses the dc terms and 1st order terms of transformer current and capacitor voltage as state variables. Singular perturbation analysis is performed to find the sufficient conditions to separate the dynamics of transformer current and capacitor voltage. Experimental results confirm that the proposed model predicts the small-signal frequency response more accurately. The third contribution addresses the controller design of a dc-dc DAB converter when driving a single-phase dc-ac inverter. It studies the effect of 120 Hz current generated by the single-phase inverter. The limitation of PI-controller is investigated. Two methods are proposed to reduce the voltage ripple at the output voltage of DAB converter. The first method helps the feedback loop with feedforward from inverter, while the second one adds an additional resonance controller to the feedback loop. Theoretical analysis, simulation and experiment results are provided to verify the effectiveness of the proposed methods --Abstract, page iii

    Efficiency comparison between the LLCL and LCL-filters based single-phase grid-tied inverters

    Get PDF
    An LLCL-filter is becoming more attractive than an LCL-filter as the interface between the grid-tied inverter and the grid due to possibility of reducing the copper and the magnetic materials. The efficiency of the LLCL-filter based single-phase grid-tied inverter also excites interests for many applications. The operation of the switches of the VSI is various with different modulation methods, which lead to different efficiencies for such a single-phase grid-tied inverter system, and therefore important research has been carried out on the effect of the choice of PWM schemes. Then power losses and efficiencies of the LLCL-filter and the LCL-filter based single-phase grid-tied inverters are analyzed and compared under the discontinuous unipolar, the dual-buck and the bipolar modulations. Results show that the efficiency of LLCL-filter based inverter system is higher than the LCL- filter based independent on the modulation method adopted. Experiments on a 2 kW prototype are in good agreement with results of the theoretical analysis
    • …
    corecore