80 research outputs found

    Analysis of design strategies for RF ESD problems in CMOS circuits

    Get PDF
    This thesis analyses the design strategies used to protect RF circuits that are implemented in CMOS technologies. It investigates, in detail, the physical mechanisms involved when a ggNMOS structure is exposed to an ESD event and undergoes snapback. The understanding gained is used to understand why the performance of the current RF ESD clamp is poor and suggestions are made as to how the performance of ggNMOS clamps can be improved beyond the current body of knowledge. The ultimate aim is to be able to design effective ESD protection clamps whilst minimising the effect the circuit has on RF I/O signals. A current ggNMOS based RF ESD I/O protection circuit is analysed in detail using a Transmission Line Pulse (TLP) tester. This is shown to be a very effective diagnostic tool by showing many characteristics of the ggNMOS during the triggering and conducting phase of the ESD event and demonstrate deficiencies in the clamp design. The use of a FIB enhances the analysis by allowing the isolation of individual components in the circuit and therefore their analysis using the TLP tester. SPICE simulations are used to provide further commentary on the debate surrounding the specification required of a TLP tester for there to be a good correlation between a TLP test and the industry standard Human Body Model (HBM) ESD test. Finite element simulations are used to probe deeper in to the mechanisms involved when a ggNMOS undergoes snapback especially with regard to the contribution parasitic components within the ggNMOS make to the snapback process. New ggNMOS clamps are proposed which after some modification are shown to work. Some of the finite element experiments are repeated in a 0.18ÎĽĎ€7. process CMOS test chip and a comparison is made between the two sets of results. In the concluding chapter understanding that has been gained from previous chapters is combined with the published body of knowledge to suggest and explain improvements in the design of a ggNMOS for RF and standard applications. These improvements will improve homogeneity of ggNMOS operation thus allowing the device size to be reduced and parasitic loading for a given ESD performance. These techniques can also be used to ensure that the ESD current does not take an unintended path through the chip

    Ultra-Wideband CMOS Transceiver Front-End for Bio-Medical Radar Sensing

    Get PDF
    Since the Federal Communication Commission released the unlicensed 3.1-10.6 GHz frequency band for commercial use in early 2002, the ultra wideband (UWB) has developed from an emerging technology into a mainstream research area. The UWB technology, which utilizes wide spectrum, opens a new era of possibility for practical applications in radar sensing, one of which is the human vital sign monitoring. The aim of this thesis is to study and research the possibility of a new generation humanrespiration monitoring sensor using UWB radar technology and to develop a new prototype of UWB radar sensor for system-on-chip solutions in CMOS technology. In this thesis, a lowpower Gaussian impulse UWB mono-static radar transceiver architecture is presented. The UWB Gaussian pulse transmitter and receiver are implemented and fabricated using 90nm CMOS technology. Since the energy of low order Gaussian pulse is mostly condensed at lower frequency, in order to transmit the pulse in a very efficient way, higher order Gaussian derivative pulses are desired as the baseband signal. This motivates the advancement of the design into UWB high-order pulse transmitter. Both the Gaussian impulse UWB transmitter and Gaussian higher-order impulse UWB transmitter take the low-power and high-speed advantage of digital circuit to generate different waveforms. The measurement results are analyzed and discussed. This thesis also presents a low-power UWB mono-static radar transceiver architecture exploiting the full benefit of UWB bandwidth in radar sensing applications. The transceiver includes a full UWB band transmitter, an UWB receiver front-end, and an on-chip diplexer. The non-coherent UWB transmitter generates pulse modulated baseband signals at different carrier frequencies within the designated 3-10 GHz band using a digitally controlled pulse generator. The test shows the proposed radar transceiver can detect the human respiration pattern within 50 cm distance. The applications of this UWB radar sensing solution in commercialized standard CMOS technology include constant breathing pattern monitoring for gated radiation therapy, realtime monitoring of patients, and any other breathing monitoring. The research paves the way to wireless technology integration with health care and bio-sensor network

    Analysis and Design of Electrostatic Discharge Protection Devices and Circuits

    Full text link
    An electrostatic discharge (ESD) is a spontaneous electrical current that flows between two objects at different electrical potentials. ESD currents can reach several amps and are typically in the order of tens of nanoseconds. Concerning microelectronics, on-chip protection against ESD events has become a main concern on the reliability of IC as dimensions continue to shrink. ESD currents could lead to on-chip voltages that are high enough to cause MOS gate oxide breakdown. ICs can thus be damaged by human handling, contact with machinery, packaging, board assembling, etc. The main goal of this study was to analyze the effectiveness of two-stage ESD protection circuits by means of mixed mode TCAD simulations. Two-dimensional device simulations were carried out using T-Suprem4 and Taurus-Medici software from Synopsis. Also, a TCAD input deck calibration for an NXP SemiconductorsÂż proprietary 0.14mÂż CMOS technology was realized. In addition, two aspects on the transparency of ESD protections were studied. An excessive leakage problem found in a real product was analyzed in TCAD. Furthermore, a new approach for distributed ESD protection design for broadband applications is also discussed, resulting in improved RF performance.PĂ©rez Monteagudo, JM. (2010). Analysis and Design of Electrostatic Discharge Protection Devices and Circuits. http://hdl.handle.net/10251/21061.Archivo delegad

    Design and Characterization of 64K Pixels Chips Working in Single Photon Processing Mode

    Get PDF
    Progress in CMOS technology and in fine pitch bump bonding has made possible the development of high granularity single photon counting detectors for X-ray imaging. This thesis studies the design and characterization of three pulse processing chips with 65536 square pixels of 55 µm x 55 µm designed in a commercial 0.25 µm 6-metal CMOS technology. The 3 chips share the same architecture and dimensions and are named Medipix2, Mpix2MXR20 and Timepix. The Medipix2 chip is a pixel detector readout chip consisting of 256 x 256 identical elements, each working in single photon counting mode for positive or negative input charge signals. The preamplifier feedback provides compensation for detector leakage current on a pixel by pixel basis. Two identical pulse height discriminators are used to define an energy window. Every event falling inside the energy window is counted with a 13 bit pseudo-random counter. The counter logic, based in a shift register, also behaves as the input/output register for the pixel. Each cell also has an 8-bit configuration register which allows masking, test-enabling and 3-bit individual threshold adjust for each discriminator. The chip can be configured in serial mode and readout either serially or in parallel. Measurements show an electronic noise ~160 e- rms with a gain of ~9 mV/ke-. The threshold spread after equalization of ~120 e- rms brings the full chip minimum detectable charge to ~1100 e-. The analog static power consumption is ~8 µW per pixel with Vdda=2.2 V. The Mpix2MXR20 is an upgraded version of the Medipix2. The main changes in the pixel consist of: an improved tolerance to radiation, improved pixel to pixel threshold uniformity, and a 14-bit counter with overflow control. The chip periphery includes new threshold DACs with smaller step size, improved linearity, and better temperature dependence. Timepix is an evolution of the Mpix2MXR20 which provides independently in each pixel information of arrival time, time-over-threshold or event counting. Timepix uses as a time reference an external clock (Ref_Clk) up to 100 MHz which is distributed all over the pixel matrix during acquisition mode. The preamplifier is improved and there is a single discriminator with 4-bit threshold adjustment in order to reduce the minimum detectable charge limit. Measurements show an electrical noise ~100 e- rms and a gain of ~16.5 mV/ke-. The threshold spread after equalization of ~35 e- rms brings the full chip minimum detectable charge either to ~650 e- with a naked chip (i.e. gas detectors) or ~750 e- when bump-bonded to a detector. The pixel static power consumption is ~13.5 µW per pixel with Vdda=2.2 V and Ref_Clk=80 MHz. This family of chips have been used for a wide variety of applications. During these studies a number of limitations have come to light. Among those are limited energy resolution and surface area. Future developments, such as Medipix3, will aim to address those limitations by carefully exploiting developments in microelectronics

    Transient Safe Operating Area (tsoa) For Esd Applications

    Get PDF
    A methodology to obtain design guidelines for gate oxide input pin protection and high voltage output pin protection in Electrostatic Discharge (ESD) time frame is developed through measurements and Technology Computer Aided Design (TCAD). A set of parameters based on transient measurements are used to define Transient Safe Operating Area (TSOA). The parameters are then used to assess effectiveness of protection devices for output and input pins. The methodology for input pins includes establishing ESD design targets under Charged Device Model (CDM) type stress in low voltage MOS inputs. The methodology for output pins includes defining ESD design targets under Human Metal Model (HMM) type stress in high voltage Laterally Diffused MOS (LDMOS) outputs. First, the assessment of standalone LDMOS robustness is performed, followed by establishment of protection design guidelines. Secondly, standalone clamp HMM robustness is evaluated and a prediction methodology for HMM type stress is developed based on standardized testing. Finally, LDMOS and protection clamp parallel protection conditions are identifie

    Statistical modelling of nano CMOS transistors with surface potential compact model PSP

    Get PDF
    The development of a statistical compact model strategy for nano-scale CMOS transistors is presented in this thesis. Statistical variability which arises from the discreteness of charge and granularity of matter plays an important role in scaling of nano CMOS transistors especially in sub 50nm technology nodes. In order to achieve reasonable performance and yield in contemporary CMOS designs, the statistical variability that affects the circuit/system performance and yield must be accurately represented by the industry standard compact models. As a starting point, predictive 3D simulation of an ensemble of 1000 microscopically different 35nm gate length transistors is carried out to characterize the impact of statistical variability on the device characteristics. PSP, an advanced surface potential compact model that is selected as the next generation industry standard compact model, is targeted in this study. There are two challenges in development of a statistical compact model strategy. The first challenge is related to the selection of a small subset of statistical compact model parameters from the large number of compact model parameters. We propose a strategy to select 7 parameters from PSP to capture the impact of statistical variability on current-voltage characteristics. These 7 parameters are used in statistical parameter extraction with an average RMS error of less than 2.5% crossing the whole operation region of the simulated transistors. Moreover, the accuracy of statistical compact model extraction strategy in reproducing the MOSFET electrical figures of merit is studied in detail. The results of the statistical compact model extraction are used for statistical circuit simulation of a CMOS inverter under different input-output conditions and different number of statistical parameters. The second challenge in the development of statistical compact model strategy is associated with statistical generation of parameters preserving the distribution and correlation of the directly extracted parameters. By using advanced statistical methods such as principal component analysis and nonlinear power method, the accuracy of parameter generation is evaluated and compared to directly extracted parameter sets. Finally, an extension of the PSP statistical compact model strategy to different channel width/length devices is presented. The statistical trends of parameters and figures of merit versus channel width/length are characterized

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso

    Disseny microelectrnic de circuits discriminadors de polsos pel detector LHCb

    Get PDF
    The aim of this thesis is to present a solution for implementing the front end system of the Scintillator Pad Detector (SPD) of the calorimeter system of the LHCb experiment that will start in 2008 at the Large Hadron Collider (LHC) at CERN. The requirements of this specific system are discussed and an integrated solution is presented, both at system and circuit level. We also report some methodological achievements. In first place, a method to study the PSRR (and any transfer function) in fully differential circuits taking into account the effect of parameter mismatch is proposed. Concerning noise analysis, a method to study time variant circuits in the frequency domain is presented and justified. This would open the possibility to study the effect of 1/f noise in time variants circuits. In addition, it will be shown that the architecture developed for this system is a general solution for front ends in high luminosity experiments that must be operated with no dead time and must be robust against ballistic deficit

    Low-frequency noise in downscaled silicon transistors: Trends, theory and practice

    Get PDF
    By the continuing downscaling of sub-micron transistors in the range of few to one deca-nanometers, we focus on the increasing relative level of the low-frequency noise in these devices. Large amount of published data and models are reviewed and summarized, in order to capture the state-of-the-art, and to observe that the 1/area scaling of low-frequency noise holds even for carbon nanotube devices, but the noise becomes too large in order to have fully deterministic devices with area less than 10nm×10nm. The low-frequency noise models are discussed from the point of view that the noise can be both intrinsic and coupled to the charge transport in the devices, which provided a coherent picture, and more interestingly, showed that the models converge each to other, despite the many issues that one can find for the physical origin of each model. Several derivations are made to explain crossovers in noise spectra, variable random telegraph amplitudes, duality between energy and distance of charge traps, behaviors and trends for figures of merit by device downscaling, practical constraints for micropower amplifiers and dependence of phase noise on the harmonics in the oscillation signal, uncertainty and techniques of averaging by noise characterization. We have also shown how the unavoidable statistical variations by fabrication is embedded in the devices as a spatial “frozen noise”, which also follows 1/area scaling law and limits the production yield, from one side, and from other side, the “frozen noise” contributes generically to temporal 1/f noise by randomly probing the embedded variations during device operation, owing to the purely statistical accumulation of variance that follows from cause-consequence principle, and irrespectively of the actual physical process. The accumulation of variance is known as statistics of “innovation variance”, which explains the nearly log-normal distributions in the values for low-frequency noise parameters gathered from different devices, bias and other conditions, thus, the origin of geometric averaging in low-frequency noise characterizations. At present, the many models generally coincide each with other, and what makes the difference, are the values, which, however, scatter prominently in nanodevices. Perhaps, one should make some changes in the approach to the low-frequency noise in electronic devices, to emphasize the “statistics behind the numbers”, because the general physical assumptions in each model always fail at some point by the device downscaling, but irrespectively of that, the statistics works, since the low-frequency noise scales consistently with the 1/area law

    Design of Frequency divider with voltage vontrolled oscillator for 60 GHz low power phase-locked loops in 65 nm RF CMOS

    Get PDF
    Increasing memory capacity in mobile devices, is driving the need of high-data rates equipment. The 7 GHz band around 60 GHz provides the opportunity for multi-gigabit/sec wireless communication. It is a real opportunity for developing next generation of High-Definition (HD) devices. In the last two decades there was a great proliferation of Voltage Controlled Oscillator (VCO) and Frequency Divider (FD) topologies in RF ICs on silicon, but reaching high performance VCOs and FDs operating at 60 GHz is in today's technology a great challenge. A key reason is the inaccuracy of CMOS active and passive device models at mm-W. Three critical issues still constitute research objectives at 60 GHz in CMOS: generation of the Local Oscillator (LO) signal (1), division of the LO signal for the Phase-Locked Loop (PLL) closed loop (2) and distribution of the LO signal (3). In this Thesis, all those three critical issues are addressed and experimentally faced-up: a divide-by-2 FD for a PLL of a direct-conversion transceiver operating at mm-W frequencies in 65 nm RF CMOS technology has been designed. Critical issues such as Process, Voltage and Temperature (PVT) variations, Electromagnetic (EM) simulations and power consumption are addressed to select and design a FD with high frequency dividing range. A 60 GHz VCO is co-designed and integrated in the same die, in order to provide the FD with mm-W input signal. VCOs and FDs play critical roles in the PLL. Both of them constitute the PLL core components and they would need co-design, having a big impact in the overall performance especially because they work at the highest frequency in the PLL. Injection Locking FD (ILFD) has been chosen as the optimum FD topology to be inserted in the control loop of mm-W PLL for direct-conversion transceiver, due to the high speed requirements and the power consumption constraint. The drawback of such topology is the limited bandwidth, resulting in narrow Locking Range (LR) for WirelessHDTM applications considering the impact of PVT variations. A simulation methodology is presented in order to analyze the ILFD locking state, proposing a first divide-by-2 ILFD design with continuous tuning. In order to design a wide LR, low power consumption ILFD, the impacts of various alternatives of low/high Q tank and injection scheme are deeply analysed, since the ILFD locking range depends on the Q of the tank and injection efficiency. The proposed 3-bit dual-mixing 60 GHz divide-by-2 LC-ILFD is designed with an accumulation of switching varactors binary scaled to compensate PVT variations. It is integrated in the same die with a 4-bit 60 GHz LC-VCO. The overall circuit is designed to allow measurements of the singles blocks stand-alone and working together. The co-layout is carried on with the EM modelling process of passives devices, parasitics and transmission lines extracted from the layout. The inductors models provided by the foundry are qualified up to 40 GHz, therefore the EM analysis is a must for post-layout simulation. The PVT variations have been simulated before manufacturing and, based on the results achieved, a PLL scheme PVT robust, considering frequency calibration, has been patented. The test chip has been measured in the CEA-Leti (Grenoble) during a stay of one week. The operation principle and the optimization trade-offs among power consumption, and locking ranges of the final selected ILFD topology have been demonstrated. Even if the experimental results are not completely in agreement with the simulations, due to modelling error and inaccuracy, the proposed technique has been validated with post-measurement simulations. As demonstrated, the locking range of a low-power, discrete tuned divide-by-2 ILFD can be enhanced by increasing the injection efficiency, without the drawbacks of higher power consumption and chip area. A 4-bits wide tuning range LC-VCO for mm-W applications has been co-designed using the selected 65 nm CMOS process.Postprint (published version
    • …
    corecore