5,080 research outputs found

    A Novel Transparent UWB Antenna for Photovoltaic Solar Panel Integration and RF Energy Harvesting

    Get PDF
    A novel transparent ultra-wideband antenna for photovoltaic solar-panel integration and RF energy harvesting is proposed in this paper. Since the approval by the Federal Communications Committee (FCC) in 2002, much research has been undertaken on UWB technology, especially for wireless communications. However, in the last decade, UWB has also been proposed as a power harvester. In this paper, a transparent cone-top-tapered slot antenna covering the frequency range from 2.2 to 12.1 GHz is designed and fabricated to provide UWB communications whilst integrated onto solar panels as well as harvest electromagnetic waves from free space and convert them into electrical energy. The antenna when sandwiched between an a-Si solar panel and glass is able to demonstrate a quasi omni-directional pattern that is characteristic of a UWB. The antenna when connected to a 2.55-GHz rectifier is able to produce 18-mV dc in free space and 4.4-mV dc on glass for an input power of 10 dBm at a distance of 5 cm. Although the antenna presented in this paper is a UWB antenna, only an operating range of 2.49 to 2.58 GHz for power scavenging is possible due to the limitation of the narrowband rectifier used for the study

    Towards Energy Neutrality in Energy Harvesting Wireless Sensor Networks: A Case for Distributed Compressive Sensing?

    Full text link
    This paper advocates the use of the emerging distributed compressive sensing (DCS) paradigm in order to deploy energy harvesting (EH) wireless sensor networks (WSN) with practical network lifetime and data gathering rates that are substantially higher than the state-of-the-art. In particular, we argue that there are two fundamental mechanisms in an EH WSN: i) the energy diversity associated with the EH process that entails that the harvested energy can vary from sensor node to sensor node, and ii) the sensing diversity associated with the DCS process that entails that the energy consumption can also vary across the sensor nodes without compromising data recovery. We also argue that such mechanisms offer the means to match closely the energy demand to the energy supply in order to unlock the possibility for energy-neutral WSNs that leverage EH capability. A number of analytic and simulation results are presented in order to illustrate the potential of the approach.Comment: 6 pages. This work will be presented at the 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, US, December 201

    RF Energy Harvesting Techniques for Battery-less Wireless Sensing, Industry 4.0 and Internet of Things: A Review

    Get PDF
    As the Internet of Things (IoT) continues to expand, the demand for the use of energy-efficient circuits and battery-less devices has grown rapidly. Battery-less operation, zero maintenance and sustainability are the desired features of IoT devices in fifth generation (5G) networks and green Industry 4.0 wireless systems. The integration of energy harvesting systems, IoT devices and 5G networks has the potential impact to digitalize and revolutionize various industries such as Industry 4.0, agriculture, food, and healthcare, by enabling real-time data collection and analysis, mitigating maintenance costs, and improving efficiency. Energy harvesting plays a crucial role in envisioning a low-carbon Net Zero future and holds significant political importance. This survey aims at providing a comprehensive review on various energy harvesting techniques including radio frequency (RF), multi-source hybrid and energy harvesting using additive manufacturing technologies. However, special emphasis is given to RF-based energy harvesting methodologies tailored for battery-free wireless sensing, and powering autonomous low-power electronic circuits and IoT devices. The key design challenges and applications of energy harvesting techniques, as well as the future perspective of System on Chip (SoC) implementation, data digitization in Industry 4.0, next-generation IoT devices, and 5G communications are discussed

    Roadmap on semiconductor-cell biointerfaces.

    Get PDF
    This roadmap outlines the role semiconductor-based materials play in understanding the complex biophysical dynamics at multiple length scales, as well as the design and implementation of next-generation electronic, optoelectronic, and mechanical devices for biointerfaces. The roadmap emphasizes the advantages of semiconductor building blocks in interfacing, monitoring, and manipulating the activity of biological components, and discusses the possibility of using active semiconductor-cell interfaces for discovering new signaling processes in the biological world

    Energy harvesting towards self-powered iot devices

    Get PDF
    The internet of things (IoT) manages a large infrastructure of web-enabled smart devices, small devices that use embedded systems, such as processors, sensors, and communication hardware to collect, send, and elaborate on data acquired from their environment. Thus, from a practical point of view, such devices are composed of power-efficient storage, scalable, and lightweight nodes needing power and batteries to operate. From the above reason, it appears clear that energy harvesting plays an important role in increasing the efficiency and lifetime of IoT devices. Moreover, from acquiring energy by the surrounding operational environment, energy harvesting is important to make the IoT device network more sustainable from the environmental point of view. Different state-of-the-art energy harvesters based on mechanical, aeroelastic, wind, solar, radiofrequency, and pyroelectric mechanisms are discussed in this review article. To reduce the power consumption of the batteries, a vital role is played by power management integrated circuits (PMICs), which help to enhance the system's life span. Moreover, PMICs from different manufacturers that provide power management to IoT devices have been discussed in this paper. Furthermore, the energy harvesting networks can expose themselves to prominent security issues putting the secrecy of the system to risk. These possible attacks are also discussed in this review article

    Feasibility of an electrostatic energy harvesting device for CFCs aircraft

    Get PDF
    A novel energy harvesting concept is proposed for treating local electrostatic energy produced on flying composite aircrafts. This work focuses on the feasibility research on collecting static charges with capacitive collectors. The existing energy harvesting system and the electrification of the typical carbon fibre composites (CFCs) aircraft has been reviewed. The detailed model experiments were then designed to characterize different configurations for electrostatic energy harvesting on aeroplane. In the lab, the static charge was produced by a corona discharging device, and a capacitor or a metal sheet was put in the electric field to collect the charges under four different configurations. After that, the rest results for these configurations were analysed, which is followed by the discussion about the results application on the aircraft. This work has proved that it is feasible to collect the local static electricity on flying aircraft, and it could provide a new direction of energy harvesting system in aviation field
    corecore