187 research outputs found

    A comparative DFT study of electronic properties of 2H-, 4H- and 6H-SiC(0001) and SiC(000-1) clean surfaces: Significance of the surface Stark effect

    Full text link
    Electric field, uniform within the slab, emerging due to Fermi level pinning at its both sides is analyzed using DFT simulations of the SiC surface slabs of different thickness. It is shown that for thicker slab the field is nonuniform and this fact is related to the surface state charge. Using the electron density and potential profiles it is proved that for high precision simulations it is necessary to take into account enough number of the Si-C layers. We show that using 12 diatomic layers leads to satisfactory results. It is also demonstrated that the change of the opposite side slab termination, both by different type of atoms or by their location, can be used to adjust electric field within the slab, creating a tool for simulation of surface properties, depending on the doping in the bulk of semiconductor. Using these simulations it was found that, depending on the electric field, the energy of the surface states changes in a different way than energy of the bulk states. This criterion can be used to distinguish Shockley and Tamm surface states. The electronic properties, i.e. energy and type of surface states of the three clean surfaces: 2H-, 4H-, 6H-SiC(0001), and SiC(0001ˉ000 \bar{1}) are analyzed and compared using field dependent DFT simulations.Comment: 18 pages, 10 figures, 4 table

    Optimization of epitaxial graphene growth for quantum metrology

    Get PDF
    The electrical quantum standards have played a decisive role in modern metrology, particularly since the introduction of the revised International System of Units (SI) in May 2019. By adapting the basic units to exactly defined natural constants, the quantized Hall resistance (QHR) standards are also given precisely. The Von Klitzing constant RK = h/e2 (h Planck's constant and e elementary charge) can be measured precisely using the quantum Hall effect (QHE) and is thus the primary representation of the ohm. Currently, the QHR standard based on GaAs/AlGaAs heterostructure has succeeded in yielding robust resistance measurements with high accuracy <10−9. In recent years, graphene has been vastly investigated due to its potential in QHR metrology. This single-layer hexagonal carbon crystal forms a two-dimensional electron gas system and exhibits the QHE, due to its properties, even at higher temperatures. Thereby, in the future the QHR standards could be realized in more simplified experimental conditions that can be used at higher temperatures and currents as well as smaller magnetic fields than is feasible in conventional GaAs/AlGaAs QHR. The quality of the graphene is of significant importance to the QHR standards application. The epitaxial graphene growth on silicon carbide (SiC) offers decisive advantages among the known fabrication methods. It enables the production of large-area graphene layers that are already electron-doped and do not have to be transferred to another substrate. However, there are fundamental challenges in epitaxial graphene growth. During the high-temperature growth process, the steps on the SiC surface bunch together and form terraces with high steps. This so-called step-bunching gives rise to the graphene thickness inhomogeneity (e.g., the bilayer formation) and extrinsic resistance anisotropy, which both deteriorate the performance of electronic devices made from it. In this thesis, the process conditions of the epitaxial graphene growth through a so-called polymer-assisted sublimation growth method are minutely investigated. Atomic force microscopy (AFM) is used to show that the previously neglected flow-rate of the argon process gas has a significant influence on the morphology of the SiC substrate and atop carbon layers. The results can be well explained using a simple model for the thermodynamic conditions at the layer adjacent to the surface. The resulting control option of step-bunching on the sub-nanometer scales is used to produce the ultra-flat, monolayer graphene layers without the bilayer inclusions that exhibit the vanishing of the resistance anisotropy. The comparison of four-point and scanning tunneling potentiometry measurements shows that the remaining small anisotropy represents the ultimate limit, which is given solely by the remaining resistances at the SiC terrace steps. Thanks to the advanced growth control, also large-area homogenous quasi-freestanding monolayer and bilayer graphene sheets are fabricated. The Raman spectroscopy and scanning tunneling microscopy reveal very low defect densities of the layers. In addition, the excellent quality of the produced freestanding layers is further evidenced by the four-point measurement showing low extrinsic resistance anisotropy in both micro- and millimeter-scales. The precise control of step-bunching using the Ar flow also enables the preparation of periodic non-identical SiC surfaces under the graphene layer. Based on the work function measurements by Kelvin-Probe force microscopy and X-ray photoemission electron microscopy, it is shown for the first time that there is a doping variation in graphene, induced by a proximity effect of the different near-surface SiC stacks. The comparison of the AFM and low-energy electron microscopy measurements have enabled the exact assignment of the SiC stacks, and the examinations have led to an improved understanding of the surface restructuring in the framework of a step-flow model. The knowledge gained can be further utilized to improve the performance of epitaxial graphene quantum resistance standard, and overall, the graphene-based electronic devices. Finally, the QHR measurements have been shown on the optimized graphene monolayers. In order to operate the graphene-based QHR at desirably low magnetic field ranges (B < 5 T), two known charge tuning techniques are applied, and the results are discussed with a view to their further implementation in the QHR metrology. Keywords: Quantum resistance metrology, epitaxial graphene growth, silicon carbide, resistance anisotropy, argon flow-rate, homogenous quasi-freestanding grapheneElektrische Quantennormale spielen eine wichtige Rolle in der modernen Metrologie, besonders seit der EinfĂŒhrung des revidierten Einheitensystems (SI) im Mai 2019. Durch die ZurĂŒckfĂŒhrung der Basiseinheiten auf exakt definierte Naturkonstanten sind auch die quantisierten Werte von Widerstandsnormalen (QHR) exakt gegeben. Die Von-Klitzing-Konstante RK = h/e2 (h Planck-Konstante und e Elementarladung) lĂ€sst sich mittels des Quanten-Hall-Effekts (QHE) prĂ€zise messen und ist somit die primĂ€re Darstellung des Ohm. Die Quanten-Widerstandsnormale bestehen aktuell aus robusten GaAs/AlGaAs-Heterostrukturen, die eine Genauigkeit <10−9 fĂŒr die Widerstands-Messung erlauben. In den letzten Jahren wird verstĂ€rkt Graphen auf sein Potenzial fĂŒr die Widerstandmetrologie untersucht. Der einlagige hexagonale Kohlenstoffkristall bildet ebenfalls ein zweidimensionales Elektrongas aus, das den Quanten-Hall-Effekt zeigt – und dies auf Grund seiner Eigenschaften schon bei höheren Temperaturen. Damit könnten in Zukunft Widerstandsnormale fĂŒr vereinfachte experimentelle Bedingungen realisiert werden, die bei höheren Temperaturen und Strömen oder kleineren Magnetfeldern eingesetzt werden können, als es mit konventionellen GaAs/AlGaAs- QHR möglich ist. FĂŒr den Einsatz als Widerstandsnormal ist die QualitĂ€t des Graphens von entscheidender Bedeutung. Unter den bekannten Herstellungsmethoden bietet das epitaktische Wachstum von Graphen auf Siliciumcarbid (SiC) entscheidende Vorteile. Es lassen sich damit großflĂ€chige Graphenschichten herstellen, die nicht auf ein anderes Substrat ĂŒbertragen werden mĂŒssen. Allerdings gibt es grundlegende Herausforderungen beim epitaktischen Wachstum. So tritt bei hohen Prozesstemperaturen eine BĂŒndelung der Kristallstufen auf der SiC-SubstratoberflĂ€che auf (Step-bunching), was zu einer bekannten extrinsischen Widerstandsanisotropie fĂŒhrt und darĂŒber hinaus die Bildung von Bilagen-Graphen begĂŒnstigt. Beides verschlechtert die Eigenschaften der daraus hergestellten Widerstandsnormale. In dieser Dissertation werden zunĂ€chst die Prozessbedingungen des mittels der sogenannten Polymer-Assisted-Sublimations-Growth-Methode hergestellten epitaktischen Graphens auf SiC genauer untersucht. Mithilfe der Rasterkraft-Mikroskopie (Atomic-Force-Microscopy, AFM) wird gezeigt, dass es einen erheblichen Einfluss der bisher wenig beachteten Flussrate des Prozessgases Argon auf die Morphologie des SiC-Substrates und der oberen Kohlenstoffschichten gibt. Anhand eines einfachen Modells fĂŒr die thermodynamischen VerhĂ€ltnisse in einer oberflĂ€chennahen Schicht lassen sich die Ergebnisse hervorragend erklĂ€ren. Die sich daraus ergebende Kontrollmöglichkeit des Step-bunching auf Sub-Nanometer-Skalen wird genutzt, um ultraflache, monolagige Graphenschichten ohne BilageneinschlĂŒsse herzustellen, die eine verschwindende Widerstandsanisotropie aufweisen. Der Vergleich von Vierpunkt-Messungen und Scanning-Tunneling-Potentiometery-Messungen zeigt, dass die verbleibende geringe Anisotropie das ultimative Limit darstellt, die allein durch die verbleibenden WiderstĂ€nde an den SiC-Terrassenstufen gegeben ist. Dank der fortschrittlichen Wachstumskontrolle werden auch großflĂ€chige, homogene quasi-freistehende Monolage- und Bilage-Graphenschichten hergestellt. Die Raman-Spektroskopie und die Rastertunnel-Mikroskopie zeigen sehr geringe Defektdichten der Schichten. DarĂŒber hinaus wird die hervorragende QualitĂ€t der hergestellten quasi-freistehenden Schichten durch die Vierpunkt-Messung unter Beweis gestellt, die eine geringe extrinsische Widerstandsanisotropie zeigt. Die prĂ€zise Kontrolle des Step-bunching mittels Ar-Fluss ermöglicht auch die gezielte PrĂ€paration von periodischen, nicht-identischen SiC-OberflĂ€chen unter der Graphenlage. Anhand von Messungen der Austrittsarbeit mit Kelvin-Probe-Force-Microscopy und X-ray Photoemission-Electron-Microscopy konnte erstmals gezeigt werden, dass es eine Variation der Graphendotierung, induziert durch einen Proximity Effekt der unterschiedlichen oberflĂ€chennahen SiC-Stapel, gibt. Der Vergleich von AFM und Low-Energy-Electron-Microscopy-Messungen ermöglicht die genaue Zuordnung der SiC-Stapel und die Untersuchungen fĂŒhren insgesamt zu einem verbesserten VerstĂ€ndnis der OberflĂ€chen-Umstrukturierung im Rahmen eines adĂ€quaten Step-Flow-Modells. Die gesammelten Erkenntnisse können zur Verbesserung der Eigenschaften von Graphen-Quantennormalen und auch allgemein von graphenbasierten Bauteilen genutzt werden. Abschließend werden QH-Widerstandsmessungen an optimierten Graphen-Monolagen gezeigt. Um den Magnetfeldbereich (B < 5 T) einzuschrĂ€nken, werden zwei bekannte extrinsische Dotiertechniken verwendet und die Ergebnisse werden im Hinblick auf den weiteren Einsatz in der QH-Metrologie diskutiert. SchlĂŒsselwörter: Wachstum des epitaktischen Graphens, Siliciumcarbid, Argon-Flussrate, Widerstandsanisotropie, homogenes quasi-freistehendes Graphe

    Development of 4H-SiC power MOSFETs for high voltage applications

    Get PDF
    Silicon carbide is a promising wide bandgap semiconductor for high-power, high-temperature and high frequency devices, owing to its high breakdown electric field strength, high thermal conductivity and ability to grow high quality SiO2 layers by thermal oxidation. Although the SiC power MOSFET (metal-oxide-semiconductor field effect transistor) is preferred as a power switch, it has suffered from low channel mobility with only single digit field effect mobility achieved using standard oxidation process (1200◩C thermal oxidation). As such, this thesis is focussed on the development of 4H-SiC MOSFETs (both lateral and vertical MOSFETs) to improve the channel mobility and breakdown characteristics of these devices. In this work, high temperature nitridation using N2O has been investigated on MOS capacitors and MOSFETs, both with gate oxides grown directly in N2O environment or in a O2 ambient followed by a N2O post-oxidation annealing process. Results have demonstrated that at high temperature (>1200◩C) there is a significant improvement in the interface trap density to as low as (1.5x10^11cm-2eV-1) and field effect channel mobility (19cm2/V.s) of 4H-SiC MOSFET compare with a lower temperature (between 800 and 1200◩C) oxidation (1x10^12cm-2eV-1 and 4cm2/V.s). Nitridation temperatures of 1300◩C was found to be the most effective method for increasing the field effect channel mobility and reducing threshold voltage. The number of working devices per sample also increased after N2O nitridation at 1300◩C as observed for both lateral and vertical MOSFETs. Other post oxidation techniques have also been investigated such as phosphorous passivation using solid SiP2O7 planar diffusion source (PDS). The peak value of the field effect mobility for 4H-SiC MOSFET after phosphorus passivation is approximately 80cm2/V.s, which is four times more than the valued obtained using high temperature N2O annealing. Different JTE structures have been designed and simulated including single-zone JTE, space modulated JTE (SMJTE) and the novel two-step mesa JTE structures. It was found that for the same doping concentration the SM two-zone JTE and SMJTE have higher breakdown voltage than the single zone JTE. With SMJTE, the device could achieve more than 90% of the ideal parallel plane voltage from simulations and 86% from the breakdown test of the fabricated devices

    Evaluation of 4h-Sic Photoconductive Switches for Pulsed Power Applications Based on Numerical Simulations

    Get PDF
    Since the early studies by Auston, photoconductive semiconductor switches (PCSSs) have been investigated intensively for many applications owing to their unique advantages over conventional gas and mechanical switches. These advantages include high speeds, fast rise times, optical isolation, compact geometry, and negligible jitter. Another important requirement is the ability to operate at high repetition rates with long device lifetimes (i.e., good reliability without degradation). Photoconductive semiconductor switches (PCSSs) are low-jitter compact alternatives to traditional gas switches in pulsed power systems. The physical properties of Silicon Carbide (SiC), such as a large bandgap (3.1-3.35 eV), high avalanche breakdown field (~3 MV/cm), and large thermal conductivity (4-5 W/cm-K) with superior radiation hardness and resistance to chemical attack, make SiC an attractive candidate for high voltage, high temperature, and high power device applications. A model-based analysis of the steady-state, current-voltage response of semi-insulating 4H-SiC was carried out to probe the internal mechanisms, focusing on electric field driven effects. Relevant physical processes, such as multiple defects, repulsive potential barriers to electron trapping, band-to-trap impact ionization, and field-dependent detrapping, were comprehensively included. Results of our model matched the available experimental data fairly well over orders of magnitude variation in the current density. A number of important parameters were also extracted in the process through comparisons with available data. Finally, based on our analysis, the possible presence of holes in the samples could be discounted up to applied fields as high as 275 kV/cm. In addition, calculations of electric field distributions in a SiC photoconductive semiconductor switch structure with metal contacts employing contact extensions on a high-k HfO2 dielectric were carried out, with the goal of assessing reductions in the peak electric fields. For completeness, analysis of thermal heating in a lateral PCSS structure with such modified geometries after photoexcitation was also included. The simulation results of the electric field distribution show that peak electric fields, and hence the potential for device failure, can be mitigated by these strategies. A combination of the two approaches was shown to produce up to a ~67% reduction in peak fields. The reduced values were well below the threshold for breakdown in SiC material using biasing close to experimental reports. The field mitigation was shown to depend on the length of the metal overhang. Further, the calculations show that, upon field mitigation, the internal temperature rise would also be controlled. A maximum value of 980 K was obtained here for an 8 ns electrical pulse at a 20 kV external bias, which is well below the limits for generating local stress or cracks or defects
    • 

    corecore