3,592 research outputs found

    Decision-making model for adaptive impedance control of teleoperation systems

    Get PDF
    © 2008-2011 IEEE. This paper presents a haptic assistance strategy for teleoperation that makes a task and situation-specific compromise between improving tracking performance or human-machine interaction in partially structured environments via the scheduling of the parameters of an admittance controller. The proposed assistance strategy builds on decision-making models and combines one of them with impedance control techniques that are standard in bilateral teleoperation systems. Even though several decision-making models have been proposed in cognitive science, their application to assisted teleoperation and assisted robotics has hardly been explored yet. Experimental data supports the Drift-Diffusion model as a suitable scheduling strategy for haptic shared control, in which the assistance mechanism can be adapted via the parameters of reward functions. Guidelines to tune the decision making model are presented. The influence of the reward structure on the realized haptic assistances is evaluated in a user study and results are compared to the no assistance and human assistance case

    Recognition of Haptic Interaction Patterns in Dyadic Joint Object Manipulation

    Get PDF
    The development of robots that can physically cooperate with humans has attained interest in the last decades. Obviously, this effort requires a deep understanding of the intrinsic properties of interaction. Up to now, many researchers have focused on inferring human intents in terms of intermediate or terminal goals in physical tasks. On the other hand, working side by side with people, an autonomous robot additionally needs to come up with in-depth information about underlying haptic interaction patterns that are typically encountered during human-human cooperation. However, to our knowledge, no study has yet focused on characterizing such detailed information. In this sense, this work is pioneering as an effort to gain deeper understanding of interaction patterns involving two or more humans in a physical task. We present a labeled human-human-interaction dataset, which captures the interaction of two humans, who collaboratively transport an object in an haptics-enabled virtual environment. In the light of information gained by studying this dataset, we propose that the actions of cooperating partners can be examined under three interaction types: In any cooperative task, the interacting humans either 1) work in harmony, 2) cope with conflicts, or 3) remain passive during interaction. In line with this conception, we present a taxonomy of human interaction patterns; then propose five different feature sets, comprising force-, velocity-and power-related information, for the classification of these patterns. Our evaluation shows that using a multi-class support vector machine (SVM) classifier, we can accomplish a correct classification rate of 86 percent for the identification of interaction patterns, an accuracy obtained by fusing a selected set of most informative features by Minimum Redundancy Maximum Relevance (mRMR) feature selection method

    Expert-in-the-Loop Multilateral Telerobotics for Haptics-Enabled Motor Function and Skills Development

    Get PDF
    Among medical robotics applications are Robotics-Assisted Mirror Rehabilitation Therapy (RAMRT) and Minimally-Invasive Surgical Training (RAMIST) that extensively rely on motor function development. Haptics-enabled expert-in-the-loop motor function development for such applications is made possible through multilateral telerobotic frameworks. While several studies have validated the benefits of haptic interaction with an expert in motor learning, contradictory results have also been reported. This emphasizes the need for further in-depth studies on the nature of human motor learning through haptic guidance and interaction. The objective of this study was to design and evaluate expert-in-the-loop multilateral telerobotic frameworks with stable and human-safe control loops that enable adaptive “hand-over-hand” haptic guidance for RAMRT and RAMIST. The first prerequisite for such frameworks is active involvement of the patient or trainee, which requires the closed-loop system to remain stable in the presence of an adaptable time-varying dominance factor. To this end, a wave-variable controller is proposed in this study for conventional trilateral teleoperation systems such that system stability is guaranteed in the presence of a time-varying dominance factor and communication delay. Similar to other wave-variable approaches, the controller is initially developed for the Velocity-force Domain (VD) based on the well-known passivity assumption on the human arm in VD. The controller can be applied straightforwardly to the Position-force Domain (PD), eliminating position-error accumulation and position drift, provided that passivity of the human arm in PD is addressed. However, the latter has been ignored in the literature. Therefore, in this study, passivity of the human arm in PD is investigated using mathematical analysis, experimentation as well as user studies involving 12 participants and 48 trials. The results, in conjunction with the proposed wave-variables, can be used to guarantee closed-loop PD stability of the supervised trilateral teleoperation system in its classical format. The classic dual-user teleoperation architecture does not, however, fully satisfy the requirements for properly imparting motor function (skills) in RAMRT (RAMIST). Consequently, the next part of this study focuses on designing novel supervised trilateral frameworks for providing motor learning in RAMRT and RAMIST, each customized according to the requirements of the application. The framework proposed for RAMRT includes the following features: a) therapist-in-the-loop mirror therapy; b) haptic feedback to the therapist from the patient side; c) assist-as-needed therapy realized through an adaptive Guidance Virtual Fixture (GVF); and d) real-time task-independent and patient-specific motor-function assessment. Closed-loop stability of the proposed framework is investigated using a combination of the Circle Criterion and the Small-Gain Theorem. The stability analysis addresses the instabilities caused by: a) communication delays between the therapist and the patient, facilitating haptics-enabled tele- or in-home rehabilitation; and b) the integration of the time-varying nonlinear GVF element into the delayed system. The platform is experimentally evaluated on a trilateral rehabilitation setup consisting of two Quanser rehabilitation robots and one Quanser HD2 robot. The framework proposed for RAMIST includes the following features: a) haptics-enabled expert-in-the-loop surgical training; b) adaptive expertise-oriented training, realized through a Fuzzy Interface System, which actively engages the trainees while providing them with appropriate skills-oriented levels of training; and c) task-independent skills assessment. Closed-loop stability of the architecture is analyzed using the Circle Criterion in the presence and absence of haptic feedback of tool-tissue interactions. In addition to the time-varying elements of the system, the stability analysis approach also addresses communication delays, facilitating tele-surgical training. The platform is implemented on a dual-console surgical setup consisting of the classic da Vinci surgical system (Intuitive Surgical, Inc., Sunnyvale, CA), integrated with the da Vinci Research Kit (dVRK) motor controllers, and the dV-Trainer master console (Mimic Technology Inc., Seattle, WA). In order to save on the expert\u27s (therapist\u27s) time, dual-console architectures can also be expanded to accommodate simultaneous training (rehabilitation) for multiple trainees (patients). As the first step in doing this, the last part of this thesis focuses on the development of a multi-master/single-slave telerobotic framework, along with controller design and closed-loop stability analysis in the presence of communication delays. Various parts of this study are supported with a number of experimental implementations and evaluations. The outcomes of this research include multilateral telerobotic testbeds for further studies on the nature of human motor learning and retention through haptic guidance and interaction. They also enable investigation of the impact of communication time delays on supervised haptics-enabled motor function improvement through tele-rehabilitation and mentoring

    A novel training and collaboration integrated framework for human-agent teleoperation.

    Get PDF
    Human operators have the trend of increasing physical and mental workloads when performing teleoperation tasks in uncertain and dynamic environments. In addition, their performances are influenced by subjective factors, potentially leading to operational errors or task failure. Although agent-based methods offer a promising solution to the above problems, the human experience and intelligence are necessary for teleoperation scenarios. In this paper, a truncated quantile critics reinforcement learning-based integrated framework is proposed for human-agent teleoperation that encompasses training, assessment and agent-based arbitration. The proposed framework allows for an expert training agent, a bilateral training and cooperation process to realize the co-optimization of agent and human. It can provide efficient and quantifiable training feedback. Experiments have been conducted to train subjects with the developed algorithm. The performances of human-human and human-agent cooperation modes are also compared. The results have shown that subjects can complete the tasks of reaching and picking and placing with the assistance of an agent in a shorter operational time, with a higher success rate and less workload than human-human cooperation

    Dutch modality exclusivity norms for 336 properties and 411 concepts

    Get PDF
    Part of the toolkit of language researchers is formed of stimuli that have been rated on various dimensions. The current study presents modality exclusivity norms for 336 properties and 411 concepts in Dutch. Forty-two respondents rated the auditory, haptic, and visual strength of these words. Mean scores were then computed, yielding acceptable reliability values. Measures of modality exclusivity and perceptual strength were also computed. Furthermore, the data includes psycholinguistic variables from other corpora, covering length (e.g., number of phonemes), frequency (e.g., contextual diversity), and distinctiveness (e.g., number of orthographic neighbours), along with concreteness and age of acquisition. To test these norms, Lynott and Connell’s (2009, 2013) analyses were replicated. First, unimodal, bimodal, and tri-modal words were found. Vision was the most prevalent modality. Vision and touch were relatively related, leaving a more independent auditory modality. Properties were more strongly perceptual than concepts. Last, sound symbolism was investigated using regression, which revealed that auditory strength predicted lexical properties of the words better than the other modalities did, or else with a different direction. All the data and analysis code, including a web application, are available from https://osf.io/brkjw/

    Haptic Hybrid Prototyping (HHP): An AR Application for Texture Evaluation with Semantic Content in Product Design

    Get PDF
    The manufacture of prototypes is costly in economic and temporal terms and in order to carry this out it is necessary to accept certain deviations with respect to the final finishes. This article proposes haptic hybrid prototyping, a haptic-visual product prototyping method created to help product design teams evaluate and select semantic information conveyed between product and user through texturing and ribs of a product in early stages of conceptualization. For the evaluation of this tool, an experiment was realized in which the haptic experience was compared during the interaction with final products and through the HHP. As a result, it was observed that the answers of the interviewees coincided in both situations in 81% of the cases. It was concluded that the HHP enables us to know the semantic information transmitted through haptic-visual means between product and user as well as being able to quantify the clarity with which this information is transmitted. Therefore, this new tool makes it possible to reduce the manufacturing lead time of prototypes as well as the conceptualization phase of the product, providing information on the future success of the product in the market and its economic return

    Haptic-Guided Teleoperation of a 7-DoF Collaborative Robot Arm With an Identical Twin Master

    Get PDF
    In this article, we describe two techniques to enable haptic-guided teleoperation using 7-DoF cobot arms as master and slave devices. A shortcoming of using cobots as master-slave systems is the lack of force feedback at the master side. However, recent developments in cobot technologies have brought in affordable, flexible, and safe torque-controlled robot arms, which can be programmed to generate force feedback to mimic the operation of a haptic device. In this article, we use two Franka Emika Panda robot arms as a twin master-slave system to enable haptic-guided teleoperation. We propose a two layer mechanism to implement force feedback due to 1) object interactions in the slave workspace, and 2) virtual forces, e.g. those that can repel from static obstacles in the remote environment or provide task-related guidance forces. We present two different approaches for force rendering and conduct an experimental study to evaluate the performance and usability of these approaches in comparison to teleoperation without haptic guidance. Our results indicate that the proposed joint torque coupling method for rendering task forces improves energy requirements during haptic guided telemanipulation, providing realistic force feedback by accurately matching the slave torque readings at the master side
    corecore