897 research outputs found

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    Machine Learning for Fluid Mechanics

    Full text link
    The field of fluid mechanics is rapidly advancing, driven by unprecedented volumes of data from field measurements, experiments and large-scale simulations at multiple spatiotemporal scales. Machine learning offers a wealth of techniques to extract information from data that could be translated into knowledge about the underlying fluid mechanics. Moreover, machine learning algorithms can augment domain knowledge and automate tasks related to flow control and optimization. This article presents an overview of past history, current developments, and emerging opportunities of machine learning for fluid mechanics. It outlines fundamental machine learning methodologies and discusses their uses for understanding, modeling, optimizing, and controlling fluid flows. The strengths and limitations of these methods are addressed from the perspective of scientific inquiry that considers data as an inherent part of modeling, experimentation, and simulation. Machine learning provides a powerful information processing framework that can enrich, and possibly even transform, current lines of fluid mechanics research and industrial applications.Comment: To appear in the Annual Reviews of Fluid Mechanics, 202

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    A Comparison of Quaternion Neural Network Backpropagation Algorithms

    Get PDF
    This research paper focuses on quaternion neural networks (QNNs) - a type of neural network wherein the weights, biases, and input values are all represented as quaternion numbers. Previous studies have shown that QNNs outperform real-valued neural networks in basic tasks and have potential in high-dimensional problem spaces. However, research on QNNs has been fragmented, with contributions from different mathematical and engineering domains leading to unintentional overlap in QNN literature. This work aims to unify existing research by evaluating four distinct QNN backpropagation algorithms, including the novel GHR-calculus backpropagation algorithm, and providing concise, scalable implementations of each algorithm using a modern compiled programming language. Additionally, the authors apply a robust Design of Experiments (DoE) methodology to compare the accuracy and runtime of each algorithm. The experiments demonstrate that the Clifford Multilayer Perceptron (CMLP) learning algorithm results in statistically significant improvements in network test set accuracy while maintaining comparable runtime performance to the other three algorithms in four distinct regression tasks. By unifying existing research and comparing different QNN training algorithms, this work develops a state-of-the-art baseline and provides important insights into the potential of QNNs for solving high-dimensional problems

    Analog Photonics Computing for Information Processing, Inference and Optimisation

    Full text link
    This review presents an overview of the current state-of-the-art in photonics computing, which leverages photons, photons coupled with matter, and optics-related technologies for effective and efficient computational purposes. It covers the history and development of photonics computing and modern analogue computing platforms and architectures, focusing on optimization tasks and neural network implementations. The authors examine special-purpose optimizers, mathematical descriptions of photonics optimizers, and their various interconnections. Disparate applications are discussed, including direct encoding, logistics, finance, phase retrieval, machine learning, neural networks, probabilistic graphical models, and image processing, among many others. The main directions of technological advancement and associated challenges in photonics computing are explored, along with an assessment of its efficiency. Finally, the paper discusses prospects and the field of optical quantum computing, providing insights into the potential applications of this technology.Comment: Invited submission by Journal of Advanced Quantum Technologies; accepted version 5/06/202

    Synchronization of Chaotic Delayed Neural Networks via Impulsive Control

    Get PDF
    This paper is concerned with the impulsive synchronization problem of chaotic delayed neural networks. By employing Lyapunov stability theorem, impulsive control theory and linear matrix inequality (LMI) technique, several new sufficient conditions ensuring the asymptotically synchronization for coupled chaotic delayed neural networks are derived. Based on these new sufficient conditions, an impulsive controller is designed. Moreover, the stable impulsive interval of synchronized neural networks is objectively estimated by combining the MATLAB LMI toolbox and one of the two given equations. Two examples with numerical simulations are given to illustrate the effectiveness of the proposed method

    Theory and Practice of Computing with Excitable Dynamics

    Get PDF
    Reservoir computing (RC) is a promising paradigm for time series processing. In this paradigm, the desired output is computed by combining measurements of an excitable system that responds to time-dependent exogenous stimuli. The excitable system is called a reservoir and measurements of its state are combined using a readout layer to produce a target output. The power of RC is attributed to an emergent short-term memory in dynamical systems and has been analyzed mathematically for both linear and nonlinear dynamical systems. The theory of RC treats only the macroscopic properties of the reservoir, without reference to the underlying medium it is made of. As a result, RC is particularly attractive for building computational devices using emerging technologies whose structure is not exactly controllable, such as self-assembled nanoscale circuits. RC has lacked a formal framework for performance analysis and prediction that goes beyond memory properties. To provide such a framework, here a mathematical theory of memory and information processing in ordered and disordered linear dynamical systems is developed. This theory analyzes the optimal readout layer for a given task. The focus of the theory is a standard model of RC, the echo state network (ESN). An ESN consists of a fixed recurrent neural network that is driven by an external signal. The dynamics of the network is then combined linearly with readout weights to produce the desired output. The readout weights are calculated using linear regression. Using an analysis of regression equations, the readout weights can be calculated using only the statistical properties of the reservoir dynamics, the input signal, and the desired output. The readout layer weights can be calculated from a priori knowledge of the desired function to be computed and the weight matrix of the reservoir. This formulation explicitly depends on the input weights, the reservoir weights, and the statistics of the target function. This formulation is used to bound the expected error of the system for a given target function. The effects of input-output correlation and complex network structure in the reservoir on the computational performance of the system have been mathematically characterized. Far from the chaotic regime, ordered linear networks exhibit a homogeneous decay of memory in different dimensions, which keeps the input history coherent. As disorder is introduced in the structure of the network, memory decay becomes inhomogeneous along different dimensions causing decoherence in the input history, and degradation in task-solving performance. Close to the chaotic regime, the ordered systems show loss of temporal information in the input history, and therefore inability to solve tasks. However, by introducing disorder and therefore heterogeneous decay of memory the temporal information of input history is preserved and the task-solving performance is recovered. Thus for systems at the edge of chaos, disordered structure may enhance temporal information processing. Although the current framework only applies to linear systems, in principle it can be used to describe the properties of physical reservoir computing, e.g., photonic RC using short coherence-length light
    corecore