331 research outputs found

    Mechanical Design, Modelling and Control of a Novel Aerial Manipulator

    Full text link
    In this paper a novel aerial manipulation system is proposed. The mechanical structure of the system, the number of thrusters and their geometry will be derived from technical optimization problems. The aforementioned problems are defined by taking into consideration the desired actuation forces and torques applied to the end-effector of the system. The framework of the proposed system is designed in a CAD Package in order to evaluate the system parameter values. Following this, the kinematic and dynamic models are developed and an adaptive backstepping controller is designed aiming to control the exact position and orientation of the end-effector in the Cartesian space. Finally, the performance of the system is demonstrated through a simulation study, where a manipulation task scenario is investigated.Comment: Comments: 8 Pages, 2015 IEEE International Conference on Robotics and Automation (ICRA '15), Seattle, WA, US

    Underwater Robots Part II: Existing Solutions and Open Issues

    Get PDF
    National audienceThis paper constitutes the second part of a general overview of underwater robotics. The first part is titled: Underwater Robots Part I: current systems and problem pose. The works referenced as (Name*, year) have been already cited on the first part of the paper, and the details of these references can be found in the section 7 of the paper titled Underwater Robots Part I: current systems and problem pose. The mathematical notation used in this paper is defined in section 4 of the paper Underwater Robots Part I: current systems and problem pose

    Underwater robotic system for reservoir maintenance

    Get PDF
    In this paper a description and practical implementation of the developed prototype of an underwater hybrid robot is presented. The solution is based on the guidelines of Cracow waterworks (Municipal Waterworks and Sewer Enterprise, MPWiK S.A.). The prototype of the hybrid robot consists of a crawler robot and a ROV. Robots’ design, mathematical models of kinematics and dynamics of the crawler robot, ROV’s vision system architecture with image processing methods for surface crack detection and robot position and attitude estimation are investigated and examined. Results obtained from experimental validation of the developed prototype are presented and discussed. Finally, the paper establishes future research directions

    Autonomous Underwater Intervention: Experimental Results of the MARIS Project

    Get PDF
    open11noopenSimetti, E. ;Wanderlingh, F. ;Torelli, S. ;Bibuli, M. ;Odetti, A. ;Bruzzone, G. ; Lodi Rizzini, D. ;Aleotti, J. ;Palli, G. ;Moriello, L. ;Scarcia, U.Simetti, E.; Wanderlingh, F.; Torelli, S.; Bibuli, M.; Odetti, Angelo; Bruzzone, G.; Lodi Rizzini, D.; Aleotti, J.; Palli, G.; Moriello, L.; Scarcia, U

    Precision stationkeeping with azimuthing thrusters

    Get PDF
    Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.Cataloged from PDF version of thesis.Includes bibliographical references.Precision positioning of an unmanned surface vehicle (USV) in a nautical environment is a difficult task. With a dual azimuthing thruster scheme, the optimization of thruster outputs uses an online method to minimize the amount of error. It simplifies necessary calculations by the assumption that the rotating thrusters are always parallel thus making the system holonomic. The scheme accommodates for limitations in actuator outputs, including rotation limits and time-lagged thrusts and was implemented in a MATLAB simulation that tested its response to step errors and disturbance forces, similar to what it would encounter in actual implementation. It successfully achieved commanded outputs in all three degrees of freedom, typically within 25 seconds. It also rejects constant and sinusoidal disturbance forces. However, specific configurations arise where the USV, at times, is uncontrollable and the system only recovers after being further perturbed into a controllable configuration.by Adam D. Doroski.S.B

    Experiment, simulation and analysis on coupling hydrodynamic forces under key parameters for a spherical underwater exploration robot

    Get PDF
    As a novel underwater exploration robot, BYSQ-2 spherical robot uses the heavy pendulum to change the attitudes with the characteristics of small steering resistance and high compressive strength. However, the greater water resistance in the process of moving forward obstructs the rapid movement, because the robot has a spherical shell and only one propeller. The maximum speed was obtained only 0.6 m/s according to experimental tests and theoretical calculations. In order to improve the movement speed, the robot’s virtual assembly model was built to study the coupling hydrodynamic forces between the spherical shell and the propeller by CFD method. The coupling hydrodynamic forces were analyzed and summarized under different key structural parameters that include the pipe diameter and the shell diameter. Furthermore, in the conditions of different rotational speed, propeller thrust and water resistance of robot were simulated and calculated. According to the simulation results of the model with the appropriate structural parameters, it was demonstrated that the speed of the robot was improved obviously in the process of moving forward
    • …
    corecore