57 research outputs found

    Experimental analysis and computational modeling of interburst intervals in spontaneous activity of cortical neuronal culture

    Get PDF
    Rhythmic bursting is the most striking behavior of cultured cortical networks and may start in the second week after plating. In this study, we focus on the intervals between spontaneously occurring bursts, and compare experimentally recorded values with model simulations. In the models, we use standard neurons and synapses, with physiologically plausible parameters taken from literature. All networks had a random recurrent architecture with sparsely connected neurons. The number of neurons varied between 500 and 5,000. We find that network models with homogeneous synaptic strengths produce asynchronous spiking or stable regular bursts. The latter, however, are in a range not seen in recordings. By increasing the synaptic strength in a (randomly chosen) subset of neurons, our simulations show interburst intervals (IBIs) that agree better with in vitro experiments. In this regime, called weakly synchronized, the models produce irregular network bursts, which are initiated by neurons with relatively stronger synapses. In some noise-driven networks, a subthreshold, deterministic, input is applied to neurons with strong synapses, to mimic pacemaker network drive. We show that models with such “intrinsically active neurons” (pacemaker-driven models) tend to generate IBIs that are determined by the frequency of the fastest pacemaker and do not resemble experimental data. Alternatively, noise-driven models yield realistic IBIs. Generally, we found that large-scale noise-driven neuronal network models required synaptic strengths with a bimodal distribution to reproduce the experimentally observed IBI range. Our results imply that the results obtained from small network models cannot simply be extrapolated to models of more realistic size. Synaptic strengths in large-scale neuronal network simulations need readjustment to a bimodal distribution, whereas small networks do not require such change

    In vitro Cortical Network Firing is Homeostatically Regulated: A Model for Sleep Regulation.

    Get PDF
    Prolonged wakefulness leads to a homeostatic response manifested in increased amplitude and number of electroencephalogram (EEG) slow waves during recovery sleep. Cortical networks show a slow oscillation when the excitatory inputs are reduced (during slow wave sleep, anesthesia), or absent (in vitro preparations). It was recently shown that a homeostatic response to electrical stimulation can be induced in cortical cultures. Here we used cortical cultures grown on microelectrode arrays and stimulated them with a cocktail of waking neuromodulators. We found that recovery from stimulation resulted in a dose-dependent homeostatic response. Specifically, the inter-burst intervals decreased, the burst duration increased, the network showed higher cross-correlation and strong phasic synchronized burst activity. Spectral power below <1.75 Hz significantly increased and the increase was related to steeper slopes of bursts. Computer simulation suggested that a small number of clustered neurons could potently drive the behavior of the network both at baseline and during recovery. Thus, this in vitro model appears valuable for dissecting network mechanisms of sleep homeostasis

    Epileptiform bursting in the disinhibited neonatal cerebral cortex

    Get PDF
    The cerebral cortex, which include the neocortex and hippocampus, is an elaborate neuronal network communicating mainly through glutamate and gamma-aminobutyric acid (GABA). Glutamate, operating via AMPA, kainate, and NMDA receptors excites neurons, and operating via metabotropic glutamate receptors can either increase or decrease the excitation in the neuronal network. GABA, operating through GABAA and GABAB receptors, inhibits the mature neuronal network, and GABAA receptor blockade in the adult cerebral cortex leads to epileptiform bursts. In contrast, in the neonatal cerebral cortex, GABAA has been proposed to function as an excitatory neurotransmitter, and glutamatergic synapses are claimed to be underdeveloped. It is important to understand the mechanisms underlying epileptiform activity in the neonate, because epileptiform activity in the neonate can potentially damage the developing cerebral cortex. In this dissertation I explore the role of GABA in controlling epileptiform activity in the neonatal cerebral cortex. Bath application of GABAA receptor antagonists induced spontaneous generation of large-amplitude population discharges resembling interictal bursts, a form of epileptiform activity; activation of GABAA receptors reduced the amplitude of interictal bursts. Interictal bursts were mediated by glutamatergic neurotransmission, demonstrating that glutamate synapses are functional in the neonate. We conclude that GABA is inhibitory in the neonatal cerebral cortex because it serves to suppress excitatory synchronous activity. Interictal bursts in the neonatal hippocampus were generated in a temporally precise rhythm. The rhythmicity of interictal bursts was not modulated by GABAB receptors, calcium activated potassium conductances, or internally released calcium, butmanipulations that facilitate or suppress the hyperpolarization-activated cation current, Ih, increased or decreased, respectively, the frequency of the bursts. We conclude Ih plays a major role in pacing neonatal interictal bursts. Immunocytochemistry illustrated that Ih channel subunits in neonatal pyramidal neurons were distributed predominately in somata, while in the juvenile and mature hippocampus and neocortex the subunits were mostly found in GABAergic terminals and in the membrane of apical dendrites of pyramidal neurons, with diminished or no expression inside the somata. We conclude that the unique expression of Ih channel subunits in the neonatal hippocampus could contribute to the increased temporal precision of interictal bursts at this developmental stage

    Emergent bursting and synchrony in computer simulations of neuronal cultures

    Get PDF
    Experimental studies of neuronal cultures have revealed a wide variety of spiking network activity ranging from sparse, asynchronous firing to distinct, network-wide synchronous bursting. However, the functional mechanisms driving these observed firing patterns are not well understood. In this work, we develop an in silico network of cortical neurons based on known features of similar in vitro networks. The activity from these simulations is found to closely mimic experimental data. Furthermore, the strength or degree of network bursting is found to depend on a few parameters: the density of the culture, the type of synaptic connections, and the ratio of excitatory to inhibitory connections. Network bursting gradually becomes more prominent as either the density, the fraction of long range connections, or the fraction of excitatory neurons is increased. Interestingly, biologically prevalent values of parameters result in networks that are at the transition between strong bursting and sparse firing. Using principal components analysis, we show that a large fraction of the variance in firing rates is captured by the first component for bursting networks. These results have implications for understanding how information is encoded at the population level as well as for why certain network parameters are ubiquitous in cortical tissue

    Development and function of human cerebral cortex neural networks from pluripotent stem cells in vitro.

    Get PDF
    A key aspect of nervous system development, including that of the cerebral cortex, is the formation of higher-order neural networks. Developing neural networks undergo several phases with distinct activity patterns in vivo, which are thought to prune and fine-tune network connectivity. We report here that human pluripotent stem cell (hPSC)-derived cerebral cortex neurons form large-scale networks that reflect those found in the developing cerebral cortex in vivo. Synchronised oscillatory networks develop in a highly stereotyped pattern over several weeks in culture. An initial phase of increasing frequency of oscillations is followed by a phase of decreasing frequency, before giving rise to non-synchronous, ordered activity patterns. hPSC-derived cortical neural networks are excitatory, driven by activation of AMPA- and NMDA-type glutamate receptors, and can undergo NMDA-receptor-mediated plasticity. Investigating single neuron connectivity within PSC-derived cultures, using rabies-based trans-synaptic tracing, we found two broad classes of neuronal connectivity: most neurons have small numbers (40). These data demonstrate that the formation of hPSC-derived cortical networks mimics in vivo cortical network development and function, demonstrating the utility of in vitro systems for mechanistic studies of human forebrain neural network biology.This is the final version of the article. It first appeared from The Company of Biologists via http://dx.doi.org/10.1242/dev.12385
    corecore