1,387 research outputs found

    Finite element analysis of porously punched prosthetic short stem virtually designed for simulative uncemented hip arthroplasty

    Get PDF
    Background: There is no universal hip implant suitably fills all femoral types, whether prostheses of porous short-stem suitable for Hip Arthroplasty is to be measured scientifically. Methods: Ten specimens of femurs scanned by CT were input onto Mimics to rebuild 3D models; their *stl format dataset were imported into Geomagic-Studio for simulative osteotomy; the generated *.igs dataset were interacted by UG to fit solid models; the prosthesis were obtained by the same way from patients, and bored by punching bears designed by Pro-E virtually; cements between femora and prosthesis were extracted by deleting prosthesis; in HyperMesh, all compartments were assembled onto four artificial joint style as: (a) cemented long-stem prosthesis; (b) porous long-stem prosthesis; (c) cemented short-stem prosthesis; (d) porous short-stem prosthesis. Then, these numerical models of Finite Element Analysis were exported to AnSys for numerical solution. Results: Observed whatever from femur or prosthesis or combinational femora-prostheses, “Kruskal-Wallis” value p > 0.05 demonstrates that displacement of (d) ≈ (a) ≈ (b) ≈ (c) shows nothing different significantly by comparison with 600 N load. If stresses are tested upon prosthesis, (d) ≈ (a) ≈ (b) ≈ (c) is also displayed; if upon femora, (d) ≈ (a) ≈ (b) < (c) is suggested; if upon integral joint, (d) ≈ (a) < (b) < (c) is presented. Conclusions: Mechanically, these four sorts of artificial joint replacement are stabilized in quantity. Cemented short-stem prostheses present the biggest stress, while porous short-stem & cemented long-stem designs are equivalently better than porous long-stem prostheses and alternatives for femoral-head replacement. The preferred design of those two depends on clinical conditions. The cemented long-stem is favorable for inactive elders with osteoporosis, and porously punched cementless short-stem design is suitable for patients with osteoporosis, while the porously punched cementless short-stem is favorable for those with a cement allergy. Clinically, the strength of this study is to enable preoperative strategy to provide acute correction and decrease procedure time

    Computational biomechanics of acute myocardial infarction and its treatment

    Get PDF
    The intramyocardial injection of biomaterials is an emerging therapy for myocardial infarction. Computational methods can help to study the mechanical effect s of biomaterial injectates on the infarcted heart s and can contribute to advance and optimise the concept of this therapy. The distribution of polyethylene glycol hydrogel injectate delivered immediately after the infarct induction was studied using rat infarct model. A micro-structural three-dimensional geometrical model of the entire injectate was reconstructed from histological micro graphs. The model provides a realistic representation of biomaterial injectates in computational models at macroscopic and microscopic level. Biaxial and compression mechanical testing was conducted for healing rat myocardial infarcted tissue at immediate (0 day), 7, 14 and 28 days after infarction onset. Infarcts were found to be mechanically anisotropic with the tissue being stiffer in circumferential direction than in longitudinal direction. The 0, 7, 14 and 28 days infarcts showed 443, 670, 857 and 1218 kPa circumferential tensile moduli. The 28 day infarct group showed a significantly higher compressive modulus compared to the other infarct groups (p= 0.0055, 0.028, and 0.018 for 0, 7 and 14 days groups). The biaxial mechanical data were utilized to establish material constitutive models of rat healing infarcts. Finite element model s and genetic algorithms were employed to identify the parameters of Fung orthotropic hyperelastic strain energy function for the healing infarcts. The provided infarct mechanical data and the identified constitutive parameters offer a platform for investigations of mechanical aspects of myocardial infarction and therapies in the rat, an experimental model extensively used in the development of infarct therapies. Micro-structurally detailed finite element model of a hydrogel injectate in an infarct was developed to provide an insight into the micromechanics of a hydrogel injectate and infarct during the diastolic filling. The injectate caused the end-diastolic fibre stresses in the infarct zone to decrease from 22.1 to 7.7 kPa in the 7 day infarct and from 35.7 to 9.7 kPa in the 28 day infarct. This stress reduction effect declined as the stiffness of the biomaterial increased. It is suggested that the gel works as a force attenuating system through micromechanical mechanisms reducing the force acting on tissue layers during the passive diastolic dilation of the left ventricle and thus reducing the stress induced in these tissue layers

    Sensor Fusion in the Perception of Self-Motion

    No full text
    This dissertation has been written at the Max Planck Institute for Biological Cybernetics (Max-Planck-Institut für Biologische Kybernetik) in Tübingen in the department of Prof. Dr. Heinrich H. Bülthoff. The work has universitary support by Prof. Dr. Günther Palm (University of Ulm, Abteilung Neuroinformatik). Main evaluators are Prof. Dr. Günther Palm, Prof. Dr. Wolfgang Becker (University of Ulm, Sektion Neurophysiologie) and Prof. Dr. Heinrich Bülthoff.amp;lt;bramp;gt;amp;lt;bramp;gt; The goal of this thesis was to investigate the integration of different sensory modalities in the perception of self-motion, by using psychophysical methods. Experiments with healthy human participants were to be designed for and performed in the Motion Lab, which is equipped with a simulator platform and projection screen. Results from psychophysical experiments should be used to refine models of the multisensory integration process, with an mphasis on Bayesian (maximum likelihood) integration mechanisms.amp;lt;bramp;gt;amp;lt;bramp;gt; To put the psychophysical experiments into the larger framework of research on multisensory integration in the brain, results of neuroanatomical and neurophysiological experiments on multisensory integration are also reviewed

    Information extraction techniques for multispectral scanner data

    Get PDF
    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions

    Flaw reconstruction in NDE using a limited number of x-ray radiographic projections

    Get PDF
    One of the major problems in nondestructive evaluation (NDE) is the evaluation of flaw sizes and locations in a limited inspectability environment. In NDE x-ray radiography, this frequently occurs when the geometry of the part under test does not allow x-ray penetration in certain directions. Other times, the inspection setup in the field does not allow for inspection at all angles around the object. This dissertation presents a model based reconstruction technique which requires a small number of x-ray projections from one side of the object under test. The estimation and reconstruction of model parameters rather than the flaw distribution itself requires much less information, thereby reducing the number of required projections. Crack-like flaws are modeled as piecewise linear curves (connected points) and are reconstructed stereographically from at least two projections by matching corresponding endpoints of the linear segments. Volumetric flaws are modeled as ellipsoids and elliptical slices through ellipsoids. The elliptical principal axes lengths, orientation angles and locations are estimated by fitting a forward model to the projection data. The fitting procedure is highly nonlinear and requires stereographic projections to obtain initial estimates of the model parameters. The methods are tested both on simulated and experimental data. Comparisons are made with models from the field of stereology. Finally, analysis of reconstruction errors is presented for both models

    Optical security and authentication using nanoscale and thin-film structures

    Get PDF
    Authentication of encoded information is a popular current trend in optical security. Recent research has proposed the production of secure unclonable ID tags and devices with the use of nanoscale encoding and thin-film deposition fabrication techniques, which are nearly impossible to counterfeit but can be verified using optics and photonics instruments. Present procedures in optical encryption provide secure access to the information, and these techniques are improving daily. Nevertheless, a rightful recipient with access to the decryption key may not be able to validate the authenticity of the message. In other words, there is no simple way to check whether the information has been counterfeited. Metallic nanoparticles may be used in the fabrication process because they provide distinctive polarimetric signatures that can be used for validation. The data is encoded in the optical domain, which can be verified using physical properties with speckle analysis or ellipsometry. Signals obtained from fake and genuine samples are complex and can be difficult to distinguish. For this reason, machine-learning classification algorithms are required in order to determine the authenticity of the encoded data and verify the security of unclonable nanoparticle encoded or thin-film-based ID tags. In this paper, we review recent research on optical validation of messages, ID tags, and codes using nanostructures, thin films, and 3D optical codes. We analyze several case scenarios where optically encoded devices have to be authenticated. Validation requires the combined use of a variety of multi-disciplinary approaches in optical and statistical techniques, and for this reason, the first five sections of this paper are organized as a tutorial

    Efficiency Quantification for Pulsed-source Digital Holographic Wavefront Sensing

    Get PDF
    The efficiencies of a digital holography (DH) system in the pulsed configuration and the off-axis image plane recording geometry are analyzed. First, the system efficiencies of an infrared-wavelength DH system in a homodyne-pulsed configuration are measured and compared to those of a visible-wavelength DH system in a homodyne-continuous-wave (CW) configuration. The total-system, excess-reference-noise, shot-noise-limit, and mixing efficiencies of the pulsed-source system were found to be consistent with those of the CW-source system. This indicated no new efficiencies were necessary to characterize pulsed-source systems when no temporal delay exists between the pulses. The consistency of efficiencies also showed infrared DH systems are viable but degraded due to infrared detector technology. A new efficiency, called the ambiguity efficiency, was introduced to account for the degradation in system performance as the temporal delay between the pulses increased. This novel efficiency was then experimentally verified. Second, a DH system in the heterodyne-pulsed configuration was characterized in terms of the total-system and ambiguity efficiencies. The efficiencies measured using a heterodyne-pulsed configuration were consistent with those measured using a homodyne-pulsed configuration. Therefore, there was no degradation in system performance by changing from a homodyne configuration to a heterodyne configuration. This will allow the effective range of pulsed-source DH systems to greatly increase. Third, the effect of spectrally broadening the source laser of a DH system in the heterodyne-pulsed configuration was analyzed. Experiments showed the ambiguity efficiency was not significantly affected by the degradation in temporal coherence. However, the total-system efficiency did change as a function of temporal coherence degradation

    Generation and characterization of spatially structured few-photon states of light

    Get PDF
    The present doctoral dissertation discusses the results of research on the characterization of spatial structure and statistical properties of few-photon states of light generated i.a. with the use of a new source based on multimode atomic memory. The dissertation comprises nine chapters grouped into the following parts: a literature and theoretical introduction, and three main parts providing the experimental results. Part I discusses the characteristics of a scientific complementary metal-oxide semiconductor camera equipped with an image intensifier (I-sCMOS) constructed by our group. We provide theoretical models of saturation of photon-number-resolving detectors which relate qualitatively to our camera. We perform experimental tomography of the I-sCMOS camera and use its results for high-fidelity reconstruction of the original statistics of the impinging light. In Part II we present an atomic memory setup in warm rubidium vapors where the write-in and readout occur due to collective Raman scattering. The memory is able to store information about the spatial structure of light. We describe the experimental setup thoroughly, with particular attention to the filtering system. We characterize multimode Raman scattering and investigate the storage performance of the memory which is limited by diffusional decoherence. We demonstrate spatial correlations between delayed Stokes and anti-Stokes photons. Using the I-sCMOS camera together with an advanced filtering system we observe spatial correlations down to single atomic excitations per memory mode. In Part III we discuss the use of the I-sCMOS camera to observe the Hong-Ou-Mandel two-photon interference with spatial resolution. We study the influence of finite spatial distinguishability of photons on the interference results, which leads us to measurements of the local spatial structure of a single photon. We observe and examine closely the following relatively unexplored phenomena. In Part I we investigate seemingly nonclassical effects in measurements of photon counts statistics on the camera. In Part II we are the first ones to show multimode Raman scattering in atomic memories. Finally, in Part III we describe the first observation of the Hong-Ou-Mandel effect with spatial resolution which is studied further in terms of finite spatial distinguishability of the interfering photons. In this thesis, we present the following novel experimental methodology. We use a new-type of I-sCMOS camera. We implement and perform the reconstruction of photon statistics based on tomographic characterization of the detector. We also build an efficient filtering system for photons generated in atomic memory. Moreover, we create an accurate method of measuring diffusion coefficients in atomic memory. We present our own methods of spatial characterization of the properties of light. Eventually, we introduce an entirely novel method: holographic measurement of the phase structure of a single photon using i.a. a specially developed phase reconstruction algorithm. The presented results fall within the scope of contemporary research in quantum optics and have a number of possible applications, as discussed in the final remarks section.Niniejsza praca doktorska prezentuje wyniki badań poświęconych charakteryzacji struktury przestrzennej i właściwości statystyk kilkufotonowych stanów światła generowanych m.in. z użyciem nowego źródła opartego na wielomodowej pamięci atomowej. Praca składająca się z 9 rozdziałów podzielona jest na wstęp literaturowy i teoretyczny oraz trzy części zawierające merytoryczne wyniki badań. Kolejno w części I prezentujemy i charakteryzujemy skonstruowany układ kamery sCMOS ze wzmacniaczem obrazu (I-sCMOS). Przedstawiamy teoretyczne modele nasycania detektorów rozróżniających liczbę fotonów, które jakościowo odnoszą się do kamery. Przeprowadzamy eksperymentalną tomografię kamery I-sCMOS a jej wyniki wykorzystujemy do wiernej rekonstrukcji pierwotnych statystyk światła padającego na kamerę. W części II prezentujemy układ pamięci atomowej w ciepłych parach rubidu, do której zapis i odczyt odbywa się w wyniku kolektywnego rozpraszania Ramana. Pamięć jest w stanie przechować informacje na temat przestrzennej struktury światła. Dokładnie opisujemy układ doświadczalny, w szczególności pod kątem układu filtrowania. Charakteryzujemy wielomodowe rozpraszanie Ramana oraz badamy zdolność przechowywania pamięci ograniczoną dekoherencją dyfuzyjną. Demonstrujemy korelacje przestrzenne pomiędzy opóźnionymi w czasie fotonami Stokesa i anty-Stokesa. Używając kamery I-sCMOS i zaawansowanego systemu filtrowania obserwujemy korelacje przestrzenne aż do reżimu pojedynczych wzbudzeń atomowych na mod pamięci. W części III wykorzystujemy kamerę I-sCMOS do badania zjawiska interferencji dwufotonowej Hong-Ou-Mandela obserwowanego z rozdzielczością przestrzenną. Studiujemy wpływ skończonej widzialności przestrzennej na wynik interferencji, która służy nam do pomiaru lokalnej struktury przestrzennej pojedynczego fotonu. Zaobserwowaliśmy i zbadaliśmy następujące słabo zbadane zjawiska. W części I badamy pozorne efekty nieklasyczne w statystykach zliczeń fotonów zmierzonych za pomocą kamery. W części II po raz pierwszy pokazujemy wielomodowe rozpraszanie Ramana w pamięciach atomowych. Natomiast w części III prezentujemy pierwszą obserwację efektu Hong-Ou-Mandela z rozdzielczością przestrzenną, którą następnie badamy pod kątem wpływu skończonej rozróżnialności przestrzennej interferujących fotonów. Na potrzeby tej pracy zostały stworzone i opracowane następujące, nowe metodologie badawcze. Stosujemy nowego typu kamerę I-sCMOS, opracowujemy rekonstrukcje statystyk fotonów na podstawie tomograficznej charakteryzacji detektora. Konstruujemy skuteczny układ filtrowania fotonów w pamięci atomowej. Tworzymy nową dokładną metodę pomiaru współczynników dyfuzji w pamięci atomowej. Prezentujemy także własne metody charakteryzacji przestrzennej statystycznych właściwości światła. W końcu, pokazujemy zupełnie nowatorską metodę holograficznego pomiaru struktury fazy pojedynczego fotonu, wykorzystującą m.in. specjalnie stworzony algorytm rekonstrukcji fazy. Zaprezentowane wyniki wpisują się w kontekst współczesnych badań w optyce kwantowej, a także posiadają szereg potencjalnych zastosowań, przedyskutowanych w podsumowaniu pracy
    corecore