135 research outputs found

    Remote Biofeedback Method for Biomedical Data Analysis

    Get PDF
    In recent years, the introduction of methods supported by technology has positively modified the traditional paradigm of rehabilitation. Interactive systems have been developed to facilitate patient involvement and to help therapist in patient\u2019s management. ReMoVES (REmote MOnitoring Validation Engineering System) platform addresses the problem of continuity of care in a smart and economical way. It can help patients with neurological, post-stroke and orthopedic impairments in recovering physical, psychological and social functions; such system will not only improve the quality of life and accelerate the recovery process for patients, but also aims at rationalizing and help the manpower required monitoring and coaching individual patients at rehabilitation centers. In order to help and support therapist work, the Remote Biofeedback Method is proposed as an instrument to understand how the patient has executed the rehabilitation exercises without seeing him directly. Therefore, the purpose of this method is to demonstrate that through the joint observation of data from simple sensors, it is possible to determine: time and method of execution of the exercises, performance and improvements during the rehabilitation session, pertinence of exercise and plan of care. The system, during the rehabilitation session, automatically transmits patient\u2019s biofeedback through three different channels: movement, physiological signals and a questionnaire. The therapist uses patient\u2019s data to determine whether the plan of care assigned is appropriate for the recovery of lost functionalities. He will then return a remote feedback to the patient who will not see any kind of graphical or verbal output, but you will see lighter rehabilitative session if it was too difficult or more intense if one assigned was too simple. The rehabilitation protocol proposed consists of the performance of different exercises, which begins with a breathing activity, designed to relax the patient before the \u201ceffective\u201d rehabilitation session. To make the subject comfortable, and to bring again the heartbeat to a basal value, before the rehabilitation session, the patient, in a sitting position, is leading to breathing with a regular rhythm by following a \u201cbreath ball\u201d. From the results obtained in the breathing exercise, it can be concluded that the negative trend of the regression line that approximates the heartbeat signal is an index of relaxation, principal goal for which the exercise was designed. The proposed activities include execution of reaching and grasping, balance and control posture functional exercises, masked through serious games to simulate some of the most common gestures of daily life. In some exercises, a cognitive component will also be involved in achieving the goal required by the activity. For each activity, heart rate, gameplay scores, and different motion parameters were captured and analyzed depending on the type of exercise performed. The heart rate was used as an indicator of motivation and involvement during the execution of several rehabilitative exercises. Others parameters analyzed are the score obtained during the execution of the task, and the time interval between the execution of one exercise and the following one. In addition to the analysis of the individual signals, a preliminary analysis of the correlation between the trend of the heart rate and the performance of the score was also carried out. The results showed that heartbeat in conjunction with score and inter-exercise time could be a high-quality indicator of a patient\u2019s status. The indicators extracted, in fact, in most cases, correspond to the information reported from the therapist who observed the patients during the rehabilitation session. A deep analysis of movement signal was carried on, with the extraction of several indicators for the different body segments involved in rehabilitation, such as the upper limb, the hand, the lower limbs and the posture, included the detection of compensation strategies to reach the targets proposed by the exercise. The results have been extracted by comparing the patient performance to a model extracted by a healthy subjects group. Of particular importance is the spatial map for patients with neglect, an innovative tool that traces the positions where the movement was performed and also provides the therapist with the spatial coordinates where the targets were proposed. Another innovative aspect is the analysis of Center of Pressure (CoP) without the use of a specific footboard, but only through the processing of data from the motion sensor. The results obtained by the application of the Remote Biofeedback Methods to the signals acquired during ReMoVES testing phase show interesting applications of the method to the clinical practice. In fact, the indicators extracted show a realistic correspondence between the disabilities affected the patients and the performance obtained during the execution of the exercises. From the study of the different exercises it can be concluded that the analysis of the signals and the parameters extracted individually, do not provide enough information to outline how the rehabilitation exercise has been executed. By combining the different indicators, it is possible to outline an accurate picture that allows the therapist to make decisions about the assigned plan of care. In conclusion, the Remote Biofeedback Method proposed is now ready to be tested on a wider dataset in order to be consolidated on a larger number of athologies and to associate, if necessary, particular indicators to a particular disease. The future steps will be, a creation of a model starting from patients signals, in order to have a better comparison term, and a testing phase on a larger number of patients, following a clinical protocol, subdividing subject by disease

    Design and Development of a Lower Limb Rehabilitation Device for Spinal Cord Injury Patients

    Get PDF
    Introduction: Spinal cord injuries (SCI) are seen commonly in Southern Africa and can completely change the course of the affected's life. Lower limb disability is a common complication from this injury, but a patient can be rehabilitated in some cases. Research and clinical observations suggest that early mobilisation and rehabilitation leads to shorter hospital stays and better clinical outcomes. Relieving the time dedication placed onto the rehabilitation team could mean that patients receive a higher standard of care. Methods: A cyclic movement device has been designed to mimic the gait cycle that a patient is attempting to recover. The device was intended towards providing a ground reaction force simulation at the correct points of the gait cycle. The device was tested in-silico with validated skeletal models to determine joint torques and angles. In-silico testing was also utilised to determine the loads placed onto the patient by the device through its use. The force data could then be used to predict possible ground reaction forces. Results: The device allows for a gait similar trace path of the ankle, comparable to that found in the literature. The ankle has a range of motion of 3 1° as the device completes a full cycle in which the crank rotates 360 °. The hip has a range of motion of 28° and the knee 35° in this same movement. The shape of the displacements of the joints of the lower limb is comparable to that seen in researched gait patterns. However, the timing of the knee and hip joints' movements are not synchronous with that of the gait patterns. The device is validated to be sufficiently stable to use, and the motor and power components can provide the 7259N.mm of torque needed to move the model. Conclusion: The results suggest that the device has potentia l as an adjunct to rehabilitation schemes. In-silico testing showed that the device is able to simulate some of the kinetic and kinematic parameters seen in normal gait. Further work is needed to prototype the device to physically and clinically validate the device

    International Conference on NeuroRehabilitation 2012

    Get PDF
    This volume 3, number 2 gathers a set of articles based on the most outstanding research on accessibility and disability issues that was presented in the International Conference on NeuroRehabilitation 2012 (ICNR).The articles’ research present in this number is centred on the analysis and/or rehabilitation of body impairment most due to brain injury and neurological disorders.JACCES thanks the collaboration of the ICNR members and the research authors and reviewers that have collaborated for making possible that issue

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Ekonomicky dostupný aktivní exoskeleton pro dolní končetiny pro paraplegiky

    Get PDF
    After a broad introduction to the medical and biomechanical background and detailed review of orthotic devices, two newly developed lower limbs exoskeletons for paraplegics are presented in this study. There was found out the main challenges of designing devices for paraplegic walking can be summarized into three groups, stability and comfort, high efficiency or low energy consumption, dimensions and weight. These all attributes have to be moreover considered and maintained during manufacturing of affordable device while setting a reasonable price of the final product. A new economical device for people with paraplegia which tackles all problems of the three groups is introduced in this work. The main idea of this device is based on HALO mechanism. HALO is a compact passive medial hip joint orthosis with contralateral hip and ankle linkage, which keeps the feet always parallel to the ground and assists swinging the leg. The medial hip joint is equipped with one actuator in the new design and the new active exoskeleton is called @halo. Due to this update, we can achieve more stable and smoother walking patterns with decreased energy consumption of the users, yet maintain its compact and lightweight features. It was proven by the results from preliminary experiments with able-bodied subjects during which the same device with and without actuator was evaluated. Waddling and excessive vertical elevation of the centre of gravity were decreased by 40% with significantly smaller standard deviations in case of the powered exoskeleton. There was 52% less energy spent by the user wearing @halo which was calculated from the vertical excursion difference. There was measured 38.5% bigger impulse in crutches while using passive orthosis, which produced bigger loads in upper extremities musculature. The inverse dynamics approach was chosen to calculate and investigate the loads applied to the upper extremities. The result of this calculation has proven that all main muscle groups are engaged more aggressively and indicate more energy consumption during passive walking. The new @halo device is the first powered exoskeleton for lower limbs with just one actuated degree of freedom for users with paraplegia.První část práce je věnována obsáhlému úvodu do zdravotnické a biomechanické terminologie a detailnímu souhrnnému představení ortopedických pomůcek. Následně jsou představeny dva nově vyvinuté exoskelety aplikovatelné na dolní končetiny paraplegiků. Bylo zjištěno, že hlavní úskalí konstrukčního návrhu asistenčních zařízení pro paraplegiky lze shrnout do tří hlavních skupin, jako první je stabilita a komfort, druhá je vysoká účinnost a nízká energetická náročnost uživatele a do třetí lze zahrnout rozměry a hmotnost zařízení. Toto všechno je navíc podmíněno přijatelnou výslednou cenou produktu. Nový ekonomicky dostupný exoskelet pro paraplegiky, který řeší problematiku všech tří zmíněných skupin je představen v této práci. Hlavní myšlenka tohoto zařízení je postavena na mechanismu HALO ortézy. HALO je kompaktní pasivní ortéza s mediálním kyčelním kloubem umístěným uprostřed mezi dolními končetinami. Speciální mediální kyčelní kloub je kontralaterálně propojen s kotníkem soustavou ocelových lanek což zajištuje paralelní polohu chodidla se zemí v každém okamžiku chůze a navíc asistuje zhoupnutí končetiny. Tento mediální kyčelní kloub je redesignován a v novém provedení je vybaven jedním aktuátorem, nové řešení aktivního exoskeletu dostalo název @halo. Díky tomuto vylepšení lze dosáhnout stabilnější a plynulejší chůze s výrazně redukovanou energetickou náročností uživatele přičemž dochází k zachování nízké hmotnosti a kompaktnosti zařízení. Toto bylo dokázáno během předběžných experimentů se zdravými subjekty, během kterých byla testována aktivní chůze se zařízením vybaveným odnímatelnou pohonnou jednotkou a pasivní chůze se stejným zařízením bez této aktivní jednotky. Nadměrné naklánění se během chůze ze strany na stranu a nadměrná výchylka pohybu těžiště těla ve vertikálním směru byly sníženy o necelých 40% s velmi významně menšími standardními odchylkami v případě chůze s pohonem. Z rozdílu výchylky pohybu těžiště těla ve vertikální poloze bylo vypočítáno snížení energetické náročnosti uživatele o 52% při chůzi s aktivní konfiguraci @halo. Při pohybu s pasivní ortézou byl naměřen o 38,5% větší reakční silový impuls v berlích, což znamená nárůst zátěže pro svalový aparát horních končetin. Pro podrobné vyšetření zátěže ramenních kloubů byl aplikován model inverzní dynamiky. Výsledek tohoto výpočtu jednoznačně indikuje agresivnější a hlubší zapojení všech svalových skupin ramenního kloubu a tím vyšší spotřebu energie uživatelem během pasivní chůze. Nové asistenční zařízení @halo je prvním exoskeletem svého druhu pro paraplegiky s jediným poháněným stupněm volnosti.354 - Katedra robotikyvyhově

    Effectiveness of intensive physiotherapy for gait improvement in stroke: systematic review

    Get PDF
    Introduction: Stroke is one of the leading causes of functional disability worldwide. Approximately 80% of post-stroke subjects have motor changes. Improvement of gait pattern is one of the main objectives of physiotherapists intervention in these cases. The real challenge in the recovery of gait after stroke is to understand how the remaining neural networks can be modified, to be able to provide response strategies that compensate for the function of the affected structures. There is evidence that intensive training, including physiotherapy, positively influences neuroplasticity, improving mobility, pattern and gait velocity in post-stroke recovery. Objectives: Review and analyze in a systematic way the experimental studies (RCT) that evaluate the effects of Intensive Physiotherapy on gait improvement in poststroke subjects. Methodology: Were only included all RCT performed in humans, without any specific age, that had a clinical diagnosis of stroke at any stage of evolution, with sensorimotor deficits and functional gait changes. The databases used were: Pubmed, PEDro (Physiotherapy Evidence Database) and CENTRAL (Cochrane Center Register of Controlled Trials). Results: After the application of the criteria, there were 4 final studies that were included in the systematic review. 3 of the studies obtained a score of 8 on the PEDro scale and 1 obtained a score of 4. The fact that there is clinical and methodological heterogeneity in the studies evaluated, supports the realization of the current systematic narrative review, without meta-analysis. Discussion: Although the results obtained in the 4 studies are promising, it is important to note that the significant improvements that have been found, should be carefully considered since pilot studies with small samples, such as these, are not designed to test differences between groups, in terms of the effectiveness of the intervention applied. Conclusion: Intensive Physiotherapy seems to be safe and applicable in post-stroke subjects and there are indications that it is effective in improving gait, namely speed, travelled distance and spatiotemporal parameters. However, there is a need to develop more RCTs with larger samples and that evaluate the longterm resultsN/
    corecore