140 research outputs found

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    A generic level 1 simulator for spaceborne GNSS-R missions and application to GEROS-ISS ocean reflectometry

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In the past decade Global Navigation Satellites System Reflectometry (GNSS-R) has emerged as a new technique for earth remote sensing for various applications, such as ocean altimetry and sea state monitoring. After the success of the GNSS-R demonstrator payloads aboard the UK-DMC or TDS-1 satellites; at present, there are several missions planned to carry GNSS reflectometers. The GNSS rEflectometry, Radio Occultation, and Scatterometry onboard International Space Station (GEROS-ISS) is an innovative ISS experiment exploiting GNSS-R technique to measure key parameters of ocean, land, and ice surfaces. For GEROS-ISS mission, the European Space Agency (ESA) supported the study of GNSS-R assessment of requirements and consolidation of retrieval algorithms (GARCA). For this, it was required to accurately simulate the GEROS-ISS measurements including the whole range of parameters affecting the observation conditions and the instrument, which is called GEROS-SIM. To meet these requirements, the PAU/PARIS end-to-end performance simulator (P2^{2}EPS) previously developed by UPC BarcelonaTech was used as the baseline building blocks for the level 1 (L1) processor of GEROS-SIM. P2^{2}EPS is a flexible tool, and is capable of systematically simulating the GNSS-R observations for spaceborne GNSS-R missions. Thanks to the completeness and flexibility, the instrument-to-L1 data module of GEROS-SIM could be implemented by proper modification and update of P2^{2}EPS. The developed GEROS-SIM was verified and validated in the GARCA study as comparing to the TDS-1 measurements. This paper presents the design, implementation, and results of the GEROS-SIM L1 module in a generic way to be applied to GNSS-R instruments.Peer ReviewedPostprint (author's final draft

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): Mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a "dynamic mapper" of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (&lt;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance

    Advanced GNSS-R instruments for altimetric and scatterometric applications

    Get PDF
    This work is the result of more than eight years during a bachelor thesis, a master thesis, and the Ph.D. thesis dedicated to the development of the Microwave Interferometric Reflectometer (MIR) instrument. It summarizes all the knowledge acquired during this time, and describes the MIR instrument as detailed as possible. MIR is a Global Navigation Satellite System - Reflectometer (GNSS-R), that is, an instrument that uses Global Navigation Satellite System (GNSS) signals scattered on the Earth's surface to retrieve geophysical parameters. These signals are received below the noise level, but since they have been spread in the frequency domain using spread-spectrum techniques, and in particular using the so-called Pseudo Random Noise (PRN) codes, it is still possible to retrieve them because of the large correlation gain achieved. In GNSS-R, two main techniques are used for this purpose: the conventional technique cGNSS-R and the interferometric one iGNSS-R, each with its pros and cons. In the former technique, the reflected signal is cross-correlated against a locally generated clean-replica of the transmitted signal. In the latter technique the reflected signal is cross-correlated with the direct one. Nowadays multiple GNSS systems coexist, transmitting narrow and wide, open and private signals. A comparison between systems, signals, and techniques in fair conditions is necessary. The MIR instrument has been designed as an airborne instrument for that purpose: the instrument has two arrays, an up-looking one, and a down-looking one, each with 19 dual-band antennas in a hexagonal distribution. The instrument is able to form 2 beams at each frequency band (L1/E1, and L5/E5A), which are pointing continuously to the desired satellites taking into account their position, as well as the instrument's position and attitude. The data is sampled and stored for later post-processing. Last but not least, MIR is auto-calibrated using similar signals to the ones transmitted by the GNSS satellites. During the instrument development, the Distance Measurement Equipment/TACtical Air Navigation (DME/TACAN) signals from the Barcelona airport threatened to disrupt the interferometric technique. These signals were also studied, and it was concluded that the use of a mitigation systems were as strongly recommended. The interferometric technique was also affected by the unwanted contribution of other satellites. The impact of these contributions was studied using real data gathered during this Ph.D. thesis. During these 8 years, the instrument was designed, built, tested, and calibrated. A field campaign was carried out in Australia between May 2018 and June 2018 to determine the instrument's accuracy in sensing soil moisture and sea altimetry. This work describes each of these steps in detail and aims to be helpful for those who decide to continue the legacy of this instrument.Este trabajo es el resultado de más de 8 años de doctorado dedicados al desarrollo del instrumento Microwave Interferometric Reflectometer (MIR). Esta tesis resume todo el conocimiento adquirido durante este tiempo, y describe el MIR lo más detalladamente posible. El MIR es un Reflectómetro de señales de Sistemas Globales de Navegación por Satélite (GNSS-R), es decir, es un instrumento que usa señales de GNSS reflejadas en la superficie de la tierra para obtener parámetros geofísicos. Estas señales son recibidas bajo el nivel de ruido, pero dado que han sido ensanchadas en el dominio frecuencial usando técnicas de espectro ensanchado, y en particular usando códigos Pseudo Random Noise (PRN), es todavía posible recibirlas debido a la elevada ganancia de correlación. En GNSS-R existen dos técnicas para este propósito: la convencional (cGNSS-R), y la interferométrica (iGNSS-R), cada una con sus pros y sus contras. En la primera se calcula la correlación cruzada de la señal reflejada y de una réplica generada del código transmitido. En la segunda técnica se calcula la correlación cruzada de la señal reflejada y de la señal directa. Hoy en día muchos sistemas GNSS coexisten, transmitiendo señales de distintos anchos de banda, algunas públicas y otras privadas. Una comparación entre sistemas, señales, y técnicas en condiciones justas es necesaria. El MIR es un instrumento aerotransportado diseñado como para ese propósito: el instrumento tiene dos arrays de antenas, uno apuntando al cielo, y otro apuntando al suelo, cada uno con 19 antenas doble banda en una distribución hexagonal. El instrumento puede formar 2 haces en cada banda frecuencial (L1/E1 y L5/E5A) que apuntan continuamente a los satélites deseados teniendo en cuenta su posición, y la posición y actitud del instrumento. Los datos son guardados para ser procesados posteriormente. Por último pero no menos importante, el MIR se calibra usando señales similares a las transmitidas por los satélites de GNSS. Durante el desarrollo del instrumento, señales del sistema Distance Measuremt Equi Distance Measurement Equipment/TACtical Air Navigation (DME/TACAN) del aeropuerto de Barcelona mostraron ser una amenaza para la técnica interferométrica. Estas señales fueron estudiadas y se concluyó que era encarecidamente recomendado el uso de sistemas de mitigación de interferencias. La técnica interferométrica también se ve afectada por las contribuciones no deseadas de otros satélites, llamado cross-talk. El impacto del cross-talk fue estudiado usando datos reales tomados durante esta tesis doctoral. A lo largo de estos 8 años el instrumento ha sido diseñado, construido, testeado y calibrado. Una campaña de medidas fue llevada a cabo en Australia entre Mayo de 2018 y Junio de 2018 para determinar la capacidad del instrumento para estimar la humedad del terreno y la altura del mar. Este documento describe cada uno de estos pasos al detalle y espera resultar útil para aquellos que decidan continuar con el legado de este instrumento.Postprint (published version

    Contributions to GNSS-R earth remote sensing from nano-satellites

    Get PDF
    Premi extraordinari doctorat UPC curs 2015-2016, àmbit de CiènciesGlobal Navigation Satellite Systems Reflectometry (GNSS-R) is a multi-static radar using navigation signals as signals of opportunity. It provides wide-swath and improved spatio-temporal sampling over current space-borne missions. The lack of experimental datasets from space covering signals from multiple constellations (GPS, GLONASS, Galileo, Beidou) at dual-band (L1 and L2) and dual-polarization (Right Hand Left Hand Circular Polarization: RHCP and LHCP), over the ocean, land and cryosphere remains a bottleneck to further develop these techniques. 3Cat-2 is a 6 units (3 x 2 elementary blocks of 10 x 10 x 10 cm3) CubeSat mission ayming to explore fundamentals issues towards an improvement in the understanding of the bistatic scattering properties of different targets. Since geolocalization of specific reflections points is determined by the geometry only, a moderate pointing accuracy is still required to correct for the antena pattern in scatterometry measurements. 3Cat-2 launch is foreseen for the first quarter 2016 into a Sun-Synchronous orbit of 510 km height using a Long March II D rocket. This Ph.D. Thesis represents the main contributions to the development of the 3Cat-2 GNSS-R Earth observation mission (6U CubeSat) including a novel type of GNSS-R technique: the reconstructed one. The desing, development of the platform, and a number of ground-based, airborne and stratospheric balloon experiments to validate the technique and to optimize the instrument. In particular, the main contributions of this Ph.D. thesis are: 1) A novel dual-band Global Navigation Satellite Systems Reflectometer that uses the P(Y) and C/A signals scattered over the sea surface to perform highly precise altimetric measurements (PYCARO). 2) The first proof-of-concept of PYCARO was performed during two different ground-based field experiments over a dam and over the sea under different surface roughness conditions. 3) The scattering of GNSS signals over a water surface has been studied when the receiver is at low height, as for GNSS-R coastal altimetry applications. The precise determination of the local sea level and wave state from the coast can provide useful altimetry and wave information as "dry" tide and wave gauges. In order to test this concept an experiment has been conducted at the Canal d'Investigació i Experimentació Marítima (CIEM) wave channel for two synthetic "sea" states. 4) Two ESA-sponsored airborne experiments were perfomed to test the precision and the relative accuracy of the conventional GNSS-R. 5) The empirical results of a GNSS-R experiment on-board the ESA-sponsored BAXUS 17 stratospheric balloon campaign performed North of Sweden over boreal forests showed that the power of the reflected signals is nearly independent of the platform height for a high coherent integration time. 6) An improved version of the PYCARO payload was tested in Octover 2014 for the second time during the ESA-sposored BEXUS-19,. This work achieved the first ever dual-frequency, multi-constellation GNSS-R observations over boreal forests and lakes using GPS, GLONASS and Galileo signals. 7) The first-ever dual-frequency multi-constellation GNSS-R dual-polarization measurements over boreal forests and lakes were obtained from the stratosphere during the BEXUS 19 using the PYCARO reflectometer operated in closed-loop mode.Global Navigation Satellite Systems Reflectometry (GNSS-R) es una técnica de radar multi-estático que usa señales de radio-navegación como señales de oportunidad. Esta técnica proporciona "wide-swath" y un mejor sampleado espacio-temporal en comparación con las misiones espaciales actuales. La falta de datos desde el espacio proporcionando señales de múltiples constelaciones (GPS, GLONASS, Galileo, Beidou) en doble banda (L1 y L2) y en doble polarización (RHCP y LHCP) sobre océano, tierra y criosfera continua siendo un problema por solucionar. 3Cat-2 es un cubesat de 6 unidades con el objetivo de explorar elementos fundamentales para mejorar el conocimiento sobre el scattering bi-estático sobre diferentes medios dispersores. Dado que la geolocalización de puntos de reflexión específicos está determinada solo por geometría, es necesario un requisito moderado de apuntamiento para corregir el diagrama de antena en aplicaciones de dispersometría. El lanzamiento del 3Cat-2 será en Q2 2016 en una órbitra heliosíncrona usando un cohete Long March II D. Esta tesis representa las contribuciones principales al desarrollo del satélite 3Cat2 para realizar observación de la tierra con GNSS-R incluyendo una nueva técnica: "the reconstructed-code GNSS-R". El diseño, desarrollo de la plataforma y un número de experimentos en tierra, desde avión y desde globo estratosférico para validar la técnica y optimizar el instrumento han sido realizados. En particular, las contribuciones de esta Ph.D. son: 1) un novedoso Global Navigation Satellite Systems Reflectometer que usa las señales P(Y) y C/A después de ser dispersadas sobre la superficie del mar para realizar medidas altimétricas muy precisas. (PYCARO). 2) La primera prueba de concepto de PYCARO se hizo en dos experimentos sobre un pantano y sobre el mar bajo diferentes condiciones de rugosidad. 3) La disperión de las señales GNSS sobre una superfice de agua ha sido estudiada para bajas altitudes para aplicaciones GNSS-R altimétricas de costa. La determinación precisa del nivel local del mar y el estado de las olas desde la costa puede proporcionar información útil de altimetría e información de olas. Para hacer un test de este concepto un experimento en el Canal d'Investigació i Experimentació Marítima (CIEM) fue realizado para dos estados sintéticos de rugosidad. 4) Dos experimentos en avión con esponsor de la ESA se realizaron para estudiar la preción y la exactitud relativa de cGNSS-R. 5) Los resultados empíricos del experimento GNSS-R en BEXUS 17 con esponsor de la ESA realizado en el norte de Suecia sobre bosques boreales mostró que la potencia reflejada de las señales es independiente de la altitud de la plataforma para un tiempo de integración coherente muy alto. 6) Una versión mejorada del PYCARO fue testeada en octubre del 2014 por segunda vez durante el BEXUS 19 que también fue patrocidado por la ESA. Este trabajo proporcionó las primeras medidas GNSS-R sobre bosques boreales en doble frecuencia usando varias constelaciones GNSS. 7) Las primeras medidas polarimétricas (RHCP y LHCP) de GNSS-R sobre bosques boreales también fueron conseguidas durante el experimento BEXUS 19.Award-winningPostprint (published version

    GNSS-IR Model of Sea Level Height Estimation Combining Variational Mode Decomposition

    Get PDF
    The Global Navigation Satellite System-Reflections (GNSS-R) signal has been confirmed to be used to retrieve sea level height. At present, the GNSS-Interferometric Reflectometry (GNSS-IR) technology based on the least square method to process signal-to-noise ratio (SNR) data is restricted by the satellite elevation angle in terms of accuracy and stability. This paper proposes a new GNSS-IR model combining variational mode decomposition (VMD) for sea level height estimation. VMD is used to decompose the SNR data into intrinsic mode functions (IMF) of layers with different frequencies, remove the IMF representing the trend item of the SNR data, and reconstruct the remaining IMF components to obtain the SNR oscillation item. In order to verify the validity of the new GNSS-IR model, the measurement data provided by the Onsala Space Observatory in Sweden is used to evaluate the performance of the algorithm and its stability in high elevation range. The experimental results show that the VMD method has good results in terms of accuracy and stability, and has advantages compared to other methods. For the half-year GNSS SNR data, the root mean square error (RMSE) and correlation coefficient of the new model based on the VMD method are 4.86 cm and 0.97, respectively
    corecore