31,808 research outputs found

    Evaluation of Deep Learning based Pose Estimation for Sign Language Recognition

    Full text link
    Human body pose estimation and hand detection are two important tasks for systems that perform computer vision-based sign language recognition(SLR). However, both tasks are challenging, especially when the input is color videos, with no depth information. Many algorithms have been proposed in the literature for these tasks, and some of the most successful recent algorithms are based on deep learning. In this paper, we introduce a dataset for human pose estimation for SLR domain. We evaluate the performance of two deep learning based pose estimation methods, by performing user-independent experiments on our dataset. We also perform transfer learning, and we obtain results that demonstrate that transfer learning can improve pose estimation accuracy. The dataset and results from these methods can create a useful baseline for future works

    Evaluating Two-Stream CNN for Video Classification

    Full text link
    Videos contain very rich semantic information. Traditional hand-crafted features are known to be inadequate in analyzing complex video semantics. Inspired by the huge success of the deep learning methods in analyzing image, audio and text data, significant efforts are recently being devoted to the design of deep nets for video analytics. Among the many practical needs, classifying videos (or video clips) based on their major semantic categories (e.g., "skiing") is useful in many applications. In this paper, we conduct an in-depth study to investigate important implementation options that may affect the performance of deep nets on video classification. Our evaluations are conducted on top of a recent two-stream convolutional neural network (CNN) pipeline, which uses both static frames and motion optical flows, and has demonstrated competitive performance against the state-of-the-art methods. In order to gain insights and to arrive at a practical guideline, many important options are studied, including network architectures, model fusion, learning parameters and the final prediction methods. Based on the evaluations, very competitive results are attained on two popular video classification benchmarks. We hope that the discussions and conclusions from this work can help researchers in related fields to quickly set up a good basis for further investigations along this very promising direction.Comment: ACM ICMR'1

    Automatic recognition of Arabic alphabets sign language using deep learning

    Get PDF
    Technological advancements are helping people with special needs overcome many communications’ obstacles. Deep learning and computer vision models are innovative leaps nowadays in facilitating unprecedented tasks in human interactions. The Arabic language is always a rich research area. In this paper, different deep learning models were applied to test the accuracy and efficiency obtained in automatic Arabic sign language recognition. In this paper, we provide a novel framework for the automatic detection of Arabic sign language, based on transfer learning applied on popular deep learning models for image processing. Specifically, by training AlexNet, VGGNet and GoogleNet/Inception models, along with testing the efficiency of shallow learning approaches based on support vector machine (SVM) and nearest neighbors algorithms as baselines. As a result, we propose a novel approach for the automatic recognition of Arabic alphabets in sign language based on VGGNet architecture which outperformed the other trained models. The proposed model is set to present promising results in recognizing Arabic sign language with an accuracy score of 97%. The suggested models are tested against a recent fully-labeled dataset of Arabic sign language images. The dataset contains 54,049 images, which is considered the first large and comprehensive real dataset of Arabic sign language to the furthest we know
    • …
    corecore