261 research outputs found

    Design and Control of a Compliant Joint for Upper-body Exoskeletons in Physical Assistance

    Get PDF

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Study on control of a robotic orthosis actuated by pneumatic artificial muscle for gait rehabilitation

    Get PDF
    芝浦工業大学2019年

    Rehabilitation Engineering

    Get PDF
    Population ageing has major consequences and implications in all areas of our daily life as well as other important aspects, such as economic growth, savings, investment and consumption, labour markets, pensions, property and care from one generation to another. Additionally, health and related care, family composition and life-style, housing and migration are also affected. Given the rapid increase in the aging of the population and the further increase that is expected in the coming years, an important problem that has to be faced is the corresponding increase in chronic illness, disabilities, and loss of functional independence endemic to the elderly (WHO 2008). For this reason, novel methods of rehabilitation and care management are urgently needed. This book covers many rehabilitation support systems and robots developed for upper limbs, lower limbs as well as visually impaired condition. Other than upper limbs, the lower limb research works are also discussed like motorized foot rest for electric powered wheelchair and standing assistance device

    Advanced Mobile Robotics: Volume 3

    Get PDF
    Mobile robotics is a challenging field with great potential. It covers disciplines including electrical engineering, mechanical engineering, computer science, cognitive science, and social science. It is essential to the design of automated robots, in combination with artificial intelligence, vision, and sensor technologies. Mobile robots are widely used for surveillance, guidance, transportation and entertainment tasks, as well as medical applications. This Special Issue intends to concentrate on recent developments concerning mobile robots and the research surrounding them to enhance studies on the fundamental problems observed in the robots. Various multidisciplinary approaches and integrative contributions including navigation, learning and adaptation, networked system, biologically inspired robots and cognitive methods are welcome contributions to this Special Issue, both from a research and an application perspective

    Hybrid walking therapy with fatigue management for spinal cord injured individuals

    Get PDF
    In paraplegic individuals with upper motor neuron lesions the descending path for signals from central nervous system to the muscles are lost or diminished. Motor neuroprosthesis based on electrical stimulation can be applied to induce restoration of motor function in paraplegic patients. Furthermore, electrical stimulation of such motor neuroprosthesis can be more efficiently managed and delivered if combined with powered exoskeletons that compensate the limited force in the stimulated muscles and bring additional support to the human body. Such hybrid overground gait therapy is likely to be more efficient to retrain the spinal cord in incomplete injuries than conventional, robotic or neuroprosthetic approaches. However, the control of bilateral joints is difficult due to the complexity, non-linearity and time-variance of the system involved. Also, the effects of muscle fatigue and spasticity in the stimulated muscles complicate the control task. Furthermore, a compliant joint actuation is required to allow for a cooperative control approach that is compatible with the assist-as-needed rehabilitation paradigm. These were direct motivations for this research. The overall aim was to generate the necessary knowledge to design a novel hybrid walking therapy with fatigue management for incomplete spinal cord injured subjects. Research activities were conducted towards the establishment of the required methods and (hardware and software) systems that required to proof the concept with a pilot clinical evaluation. Speciffically, a compressive analysis of the state of the art on hybrid exoskeletons revealed several challenges which were tackled by this dissertation. Firstly, assist-as-needed was implemented over the basis of a compliant control of the robotic exoskeleton and a closed-loop control of the neuroprosthesis. Both controllers are integrated within a hybrid-cooperative strategy that is able to balance the assistance of the robotic exoskeleton regarding muscle performance. This approach is supported on the monitoring of the leg-exoskeleton physical interaction. Thus the fatigue caused by neuromuscular stimulation was also subject of speciffic research. Experimental studies were conducted with paraplegic patients towards the establishment of an objective criteria for muscle fatigue estimation and management. The results of these studies were integrated in the hybrid-cooperative controller in order to detect and manage muscle fatigue while providing walking therapy. Secondly closed-loop control of the neuroprosthesis was addressed in this dissertation. The proposed control approach allowed to tailor the stimulation pattern regarding the speciffic residual motor function of the lower limb of the patient. In order to uncouple the closed-loop control from muscle performance monitoring, the hybrid-cooperative control approach implemented a sequential switch between closed-loop and open-loop control of the neuroprosthesis. Lastly, a comprehensive clinical evaluation protocol allowed to assess the impact of the hybrid walking therapy on the gait function of a sample of paraplegic patients. Results demonstrate that: 1) the hybrid controller adapts to patient residual function during walking, 2) the therapy is tolerated by patients, and 3) the walking function of patients was improved after participating in the study. In conclusion, the hybrid walking therapy holds potential for rehabilitate walking in motor incomplete paraplegic patients, guaranteeing further research on this topic. This dissertation is framed within two research projects: REHABOT (Ministerio de Ciencia e Innovación, grant DPI2008-06772-C03-02) and HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, grant CSD2009-00067 CONSOLIDER INGENIO 2010). Within these research projects, cutting-edge research is conducted in the eld of hybrid actuation and control for rehabilitation of motor disorders. This dissertation constitutes proof-of concept of the hybrid walking therapy for paraplegic individuals for these projects. ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------En individuos parapléjicos con lesiones de la motoneurona superior, la conexión descendente para la transmisión de las señales del sistema nervioso central a los músculos se ve perdida o disminuida. Las neuroprótesis motoras basadas en la estimulación eléctrica pueden ser aplicadas para inducir la restauración de la función motora en pacientes con paraplejia. Además, la estimulación eléctrica de tales neuroprótesis motoras se puede gestionar y aplicar de manera más eficiente mediante la combinación con exoesqueletos robóticos que compensen la generación limitada de fuerza de los músculos estimulados, y proporcionen soporte adicional para el cuerpo. Dicha terapia de marcha ambulatoria puede ser probablemente más eficaz para la recuperación de las funciones de la médula espinal en lesiones incompletas que las terapias convencionales, robóticas o neuroprotesicas. Sin embargo, el control bilateral de las articulaciones es difícil debido a la complejidad, no-linealidad y la variación con el tiempo de las características del sistema en cuestión. Además, la fatiga muscular y la espasticidad de los músculos estimulados complican la tarea de control. Por otra parte, se requiere una actuación robótica modulable para permitir un enfoque de control cooperativo compatible con el paradigma de rehabilitación de asistencia bajo demanda. Todo lo anterior constituyó las motivaciones directas para esta investigación. El objetivo general fue generar el conocimiento necesario para diseñar un nuevo tratamiento híbrido de rehabilitación marcha con gestión de la fatiga para lesionados medulares incompletos. Se llevaron a cabo actividades de investigación para el establecimiento de los métodos necesarios y los sistemas (hardware y software) requeridos para probar el concepto mediante una evaluación clínica piloto. Específicamente, un análisis del estado de la técnica sobre exoesqueletos híbridos reveló varios retos que fueron abordados en esta tesis. En primer lugar, el paradigma de asistencia bajo demanda se implementó sobre la base de un control adaptable del exoesqueleto robótico y un control en lazo cerrado de la neuroprótesis. Ambos controladores están integrados dentro de una estrategia híbrida cooperativa que es capaz de equilibrar la asistencia del exoesqueleto robótico en relación con el rendimiento muscular. Este enfoque se soporta sobre la monitorización de la interacción física entre la pierna y el exoesqueleto. Por tanto, la fatiga causada por la estimulación neuromuscular también fue objeto de una investigación específica. Se realizaron estudios experimentales con pacientes parapléjicos para el establecimiento de un criterio objetivo para la detección y la gestión de la fatiga muscular. Los resultados de estos estudios fueron integrados en el controlador híbrido-cooperativo con el fin de detectar y gestionar la fatiga muscular mientras se realiza la terapia híbrida de rehabilitación de la marcha. En segundo lugar, el control en lazo cerrado de la neuroprótesis fue abordado en esta tesis. El método de control propuesto permite adaptar el patrón de estimulación en relación con la funcionalidad residual específica de la extremidad inferior del paciente. Sin embargo, con el n de desacoplar el control en lazo cerrado de la monitorización del rendimiento muscular, el enfoque de control híbrido-cooperativo incorpora una conmutación secuencial entre el control en lazo cerrado y en lazo abierto de la neuropr otesis. Por último, un protocolo de evaluación clínica global permitido evaluar el impacto de la terapia híbrida de la marcha en la función de la marcha de una muestra de pacientes parapléjicos. Los resultados demuestran que: 1) el controlador híbrido se adapta a la función residual del paciente durante la marcha, 2) la terapia es tolerada por los pacientes, y 3) la funci on de marcha del paciente mejora despu es de participar en el estudio. En conclusión, la terapia de híbrida de la marcha alberga un potencial para la rehabilitación de la marcha en pacientes parapléjicos incompletos motor, garantizando realizar investigación más profunda sobre este tema. Esta tesis se enmarca dentro de los dos proyectos de investigación: REHABOT (Ministerio de Ciencia e Innovación, referencia DPI2008-06772-C03-02) y HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, referencia CSD2009-00067 CONSOLIDER INGENIO 2010). Dentro de estos proyectos se lleva a cabo investigación de vanguardia en el campo de la actuación y el control híbrido de la combinación robot-neuroprótesis para la rehabilitación de trastornos motores. Esta tesis constituye la prueba de concepto de la terapia de híbrida de la marcha para individuos parapléjicos en estos proyectos.This dissertation is framed within two research projects: REHABOT (Ministerio de Ciencia e Innovación, grant DPI2008-06772-C03-02) and HYPER (Hybrid Neuroprosthetic and Neurorobotic Devices for Functional Compensation and Rehabilitation of Motor Disorders, grant CSD2009-00067 CONSOLIDER INGENIO 2010

    The application of estimation and control techniques in 2 modes of exercise for the spinal cord injured

    Get PDF
    A spinal cord injury (SCI) can result in a loss of sensory and motor capacity, dysfunction of the autonomic nervous system and also in a number of secondary health conditions including muscular atrophy, cardiovascular disease and osteoporosis. The impact of these secondary health conditions may be reduced through exercise which loads the muscles, skeleton and central cardiovascular system. A number of new exercise methods are emerging in the field of rehabilitation. Functional electrical stimulation (FES) is a technique for inducing artificial muscular contractions that has been applied to facilitate cycling amongst adults with a spinal cord injury. Preliminary data has demonstrated the feasibility of FES cycling in the paediatric SCI population. The use of an electric motor to provide torque assistance where required allows the exercise to continue for longer periods and over a wider range of cadences. In this thesis, a feedback control system is devised whereby the cadence can be automatically controlled to reference levels using such a motor, and tested during FES cycling of children with an SCI. The use of robot-assisted body weight supported devices is gaining popularity in the rehabilitation world. Their application has thus far been focused on rehabilitation of gait via neural re-learning. However, robot-assisted gait can also elicit a significant cardiovascular response and thus has potential as a tool for exercise training and testing. In this thesis, a method for estimating the work rate contributed by an exercising subject is developed and then incorporated into a feedback control scheme where the objective is to regulate the work rate to reference values. This enables specific work rate profiles to be performed during robot-assisted gait as is often required for standard exercise tests and training. In addition to controlling the mechanical variables during exercise, it is also possible to control some of the physiological variables. A feedback system whose goal is to control the rate of oxygen uptake rate is developed which also incorporates the work rate control method. This allows a predetermined level of physiological response to be achieved so that the training is of sufficient intensity to promote improvements in physical capacity and fitness. This thesis examines the application of estimation and control techniques in two exercise modes for the spinal cord injured. The ultimate aim of the exercise is to reduce the severity of the secondary health conditions that spinal cord injured people face. The estimation and control algorithms allow the exercise to be regulated with respect to speed and intensity and therefore have utility in both training and testing applications

    User-Centered Modelling and Design of Assistive Exoskeletons

    Get PDF

    Applications of EMG in Clinical and Sports Medicine

    Get PDF
    This second of two volumes on EMG (Electromyography) covers a wide range of clinical applications, as a complement to the methods discussed in volume 1. Topics range from gait and vibration analysis, through posture and falls prevention, to biofeedback in the treatment of neurologic swallowing impairment. The volume includes sections on back care, sports and performance medicine, gynecology/urology and orofacial function. Authors describe the procedures for their experimental studies with detailed and clear illustrations and references to the literature. The limitations of SEMG measures and methods for careful analysis are discussed. This broad compilation of articles discussing the use of EMG in both clinical and research applications demonstrates the utility of the method as a tool in a wide variety of disciplines and clinical fields
    corecore