1,200 research outputs found

    Perceptual Issues Improve Haptic Systems Performance

    Get PDF

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    How do humans mediate with the external physical world? From perception to control of articulated objects

    Get PDF
    Many actions in our daily life involve operation with articulated tools. Despite the ubiquity of articulated objects in daily life, human ability in perceiving the properties and control of articulated objects has been merely studied. Articulated objects are composed of links and revolute or prismatic joints. Moving one part of the linkage results in the movement of the other ones. Reaching a position with the tip of a tool requires adapting the motor commands to the change of position of the endeffector different from the action of reaching the same position with the hand. The dynamic properties are complex and variant in the movement of articulated bodies. For instance, apparent mass, a quantity that measures the dynamic interaction of the articulated object, varies as a function of the changes in configuration. An actuated articulated system can generate a static, but position-dependent force field with constant torques about joints. There are evidences that internal models are involved in the perception and control of tools. In the present work, we aim to investigate several aspects of the perception and control of articulated objects and address two questions, The first question is how people perceive the kinematic and dynamic properties in the haptic interaction with articulated objects? And the second question is what effect has seeing the tool on the planning and execution of reaching movements with a complex tool? Does the visual representation of mechanism structures help in the reaching movement and how? To address these questions, 3D printed physical articulated objects and robotic systems have been designed and developed for the psychophysical studies. The present work involves three studies in different aspects of perception and control of articulated objects. We first did haptic size discrimination tasks using three different types of objects, namely, wooden boxes, actuated apparatus with two movable flat surfaces, and large-size pliers, in unimanual, bimanual grounded and bimanual free conditions. We found bimanual integration occurred in particular in the free manipulation of objects. The second study was on the visuo-motor reaching with complex tools. We found that seeing the mechanism of the tool, even briefly at the beginning of the trial, improved the reaching performance. The last study was about force perception, evidences showed that people could take use of the force field at the end-effector to induce the torque about the joints generated by the articulated system

    Haptics: Science, Technology, Applications

    Get PDF
    This open access book constitutes the proceedings of the 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, held in Hamburg, Germany, in May 2022. The 36 regular papers included in this book were carefully reviewed and selected from 129 submissions. They were organized in topical sections as follows: haptic science; haptic technology; and haptic applications

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Enhancing the E-Commerce Experience through Haptic Feedback Interaction

    Get PDF
    The sense of touch is important in our everyday lives and its absence makes it difficult to explore and manipulate everyday objects. Existing online shopping practice lacks the opportunity for physical evaluation, that people often use and value when making product choices. However, with recent advances in haptic research and technology, it is possible to simulate various physical properties such as heaviness, softness, deformation, and temperature. The research described here investigates the use of haptic feedback interaction to enhance e-commerce product evaluation, particularly haptic weight and texture evaluation. While other properties are equally important, besides being fundamental to the shopping experience of many online products, weight and texture can be simulated using cost-effective devices. Two initial psychophysical experiments were conducted using free motion haptic exploration in order to more closely resemble conventional shopping. One experiment was to measure weight force thresholds and another to measure texture force thresholds. The measurements can provide better understanding of haptic device limitation for online shopping in terms of the availability of different stimuli to represent physical products. The outcomes of the initial psychophysical experimental studies were then used to produce various absolute stimuli that were used in a comparative experimental study to evaluate user experience of haptic product evaluation. Although free haptic exploration was exercised on both psychophysical experiments, results were relatively consistent with previous work on haptic discrimination. The threshold for weight force discrimination represented as downward forces was 10 percent. The threshold for texture force discrimination represented as friction forces was 14.1 percent, when using dynamic coefficient of friction at any level of static coefficient of friction. On the other hand, the comparative experimental study to evaluate user experience of haptic product information indicated that haptic product evaluation does not change user performance significantly. However, although there was an increase in the time taken to complete the task, the number of button click actions tended to decrease. The results showed that haptic product evaluation could significantly increase the confidence of shopping decision. Nevertheless, the availability of haptic product evaluation does not necessarily impose different product choices but it complements other selection criteria such as price and appearance. The research findings from this work are a first step towards exploring haptic-based environments in e-commerce environments. The findings not only lay the foundation for designing online haptic shopping but also provide empirical support to research in this direction
    • 

    corecore