1,116 research outputs found

    Security assessment of open source third-parties applications

    Get PDF
    Free and Open Source Software (FOSS) components are ubiquitous in both proprietary and open source applications. In this dissertation we discuss challenges that large software vendors face when they must integrate and maintain FOSS components into their software supply chain. Each time a vulnerability is disclosed in a FOSS component, a software vendor must decide whether to update the component, patch the application itself, or just do nothing as the vulnerability is not applicable to the deployed version that may be old enough to be not vulnerable. This is particularly challenging for enterprise software vendors that consume thousands of FOSS components, and offer more than a decade of support and security fixes for applications that include these components. First, we design a framework for performing security vulnerability experimentations. In particular, for testing known exploits for publicly disclosed vulnerabilities against different versions and software configurations. Second, we provide an automatic screening test for quickly identifying the versions of FOSS components likely affected by newly disclosed vulnerabilities: a novel method that scans across the entire repository of a FOSS component in a matter of minutes. We show that our screening test scales to large open source projects. Finally, for facilitating the global security maintenance of a large portfolio of FOSS components, we discuss various characteristics of FOSS components and their potential impact on the security maintenance effort, and empirically identify the key drivers

    A systematic review on regression test selection techniques

    Get PDF
    Regression testing is verifying that previously functioning software remains after a change. With the goal of finding a basis for further research in a joint industry-academia research project, we conducted a systematic review of empirical evaluations of regression test selection techniques. We identified 27 papers reporting 36 empirical studies, 21 experiments and 15 case studies. In total 28 techniques for regression test selection are evaluated. We present a qualitative analysis of the findings, an overview of techniques for regression test selection and related empirical evidence. No technique was found clearly superior since the results depend on many varying factors. We identified a need for empirical studies where concepts are evaluated rather than small variations in technical implementations

    Empirical assessment of the effort needed to attack programs protected with client/server code splitting

    Get PDF
    Context. Code hardening is meant to fight malicious tampering with sensitive code executed on client hosts. Code splitting is a hardening technique that moves selected chunks of code from client to server. Although widely adopted, the effective benefits of code splitting are not fully understood and thoroughly assessed. Objective. The objective of this work is to compare non protected code vs. code splitting protected code, considering two levels of the chunk size parameter, in order to assess the effectiveness of the protection - in terms of both attack time and success rate - and to understand the attack strategy and process used to overcome the protection. Method. We conducted an experiment with master students performing attack tasks on a small application hardened with different levels of protection. Students carried out their task working at the source code level. Results. We observed a statistically significant effect of code splitting on the attack success rate that, on the average, was reduced from 89% with unprotected clear code to 52% with the most effective protection. The protection variant that moved some small-sized code chunks turned out to be more effective than the alternative moving fewer but larger chunks. Different strategies were identified yielding different success rates. Moreover, we discovered that successful attacks exhibited different process w.r.t. failed ones.Conclusions We found empirical evidence of the effect of code splitting, assessed the relative magnitude, and evaluated the influence of the chunk size parameter. Moreover, we extracted the process used to overcome such obfuscation technique

    A comparison of tree- and line-oriented observational slicing

    Get PDF
    Observation-based slicing and its generalization observational slicing are recently-introduced, language-independent dynamic slicing techniques. They both construct slices based on the dependencies observed during program execution, rather than static or dynamic dependence analysis. The original implementation of the observation-based slicing algorithm used lines of source code as its program representation. A recent variation, developed to slice modelling languages (such as Simulink), used an XML representation of an executable model. We ported the XML slicer to source code by constructing a tree representation of traditional source code through the use of srcML. This work compares the tree- and line-based slicers using four experiments involving twenty different programs, ranging from classic benchmarks to million-line production systems. The resulting slices are essentially the same size for the majority of the programs and are often identical. However, structural constraints imposed by the tree representation sometimes force the slicer to retain enclosing control structures. It can also “bog down” trying to delete single-token subtrees. This occasionally makes the tree-based slices larger and the tree-based slicer slower than a parallelised version of the line-based slicer. In addition, a Java versus C comparison finds that the two languages lead to similar slices, but Java code takes noticeably longer to slice. The initial experiments suggest two improvements to the tree-based slicer: the addition of a size threshold, for ignoring small subtrees, and subtree replacement. The former enables the slicer to run 3.4 times faster while producing slices that are only about 9% larger. At the same time the subtree replacement reduces size by about 8–12% and allows the tree-based slicer to produce more natural slices
    • …
    corecore