13,934 research outputs found

    Leveraging Deliberately Generated Interferences for Multi-sensor Wireless RF Power Transmission

    Full text link
    Wireless RF power transmission promises battery-less, resilient, and perpetual wireless sensor networks. Through the action of controllable Energy Transmitters (ETs) that operate at-a-distance, the sensors can be re-charged by harvesting the radiated RF energy. However, both the charging rate and effective charging range of the ETs are limited, and thus multiple ETs are required to cover large areas. While this action increases the amount of wireless energy injected into the network, there are certain areas where the RF energy combines destructively. To address this problem, we propose a duty-cycled random-phase multiple access (DRAMA). Non-intuitively, our approach relies on deliberately generating random interferences, both destructive and constructive, at the destination nodes. We demonstrate that DRAMA optimizes the power conversion efficiency, and the total amount of energy harvested. Through real-testbed experiments, we prove that our proposed scheme provides significant advantages over the current state of the art in our considered scenario, as it requires up to 70\% less input RF power to recharge the energy buffer of the sensor in the same time.Comment: IEEE GLOBECOM 201

    Prototyping and Experimentation of a Closed-Loop Wireless Power Transmission with Channel Acquisition and Waveform Optimization

    Full text link
    A systematic design of adaptive waveform for Wireless Power Transfer (WPT) has recently been proposed and shown through simulations to lead to significant performance benefits compared to traditional non-adaptive and heuristic waveforms. In this study, we design the first prototype of a closed-loop wireless power transfer system with adaptive waveform optimization based on Channel State Information acquisition. The prototype consists of three important blocks, namely the channel estimator, the waveform optimizer, and the energy harvester. Software Defined Radio (SDR) prototyping tools are used to implement a wireless power transmitter and a channel estimator, and a voltage doubler rectenna is designed to work as an energy harvester. A channel adaptive waveform with 8 sinewaves is shown through experiments to improve the average harvested DC power at the rectenna output by 9.8% to 36.8% over a non-adaptive design with the same number of sinewaves.Comment: accepted for publication in IEEE WPTC 201

    Experimental Study on Battery-less Sensor Network Activated by Multi-point Wireless Energy Transmission

    Full text link
    This paper empirically validates battery-less sensor activation via wireless energy transmission to release sensors from wires and batteries. To seamlessly extend the coverage and activate sensor nodes distributed in any indoor environment, we proposed multi-point wireless energy transmission with carrier shift diversity. In this scheme, multiple transmitters are employed to compensate path-loss attenuation and orthogonal frequencies are allocated to the multiple transmitters to avoid the destructive interference that occurs when the same frequency is used by all transmitters. In our previous works, the effectiveness of the proposed scheme was validated theoretically and also empirically by using just a spectrum analyzer to measure the received power. In this paper, we develop low-energy battery-less sensor nodes whose consumed power and required received power for activation are respectively 142 uW and 400 uW. In addition, we conduct indoor experiments in which the received power and activation of battery-less sensor node are simultaneously observed by using the developed battery-less sensor node and a spectrum analyzer. The results show that the coverage of single-point and multi-point wireless energy transmission without carrier shift diversity are, respectively, 84.4% and 83.7%, while the coverage of the proposed scheme is 100%. It can be concluded that the effectiveness of the proposed scheme can be verified by our experiments using real battery-less sensor nodes.Comment: This paper is submitted to IEICE Transactions on Communication

    Optical Wireless Communication Systems, A Survey

    Full text link
    In the past few years, the demand for high data rate services has increased dramatically. The congestion in the radio frequency (RF) spectrum (3 kHz ~ 300 GHz) is expected to limit the growth of future wireless systems unless new parts of the spectrum are opened. Even with the use of advanced engineering, such as signal processing and advanced modulation schemes, it will be very challenging to meet the demands of the users in the next decades using the existing carrier frequencies. On the other hand, there is a potential band of the spectrum available that can provide tens of Gbps to Tbps for users in the near future. Optical wireless communication (OWC) systems are among the promising solutions to the bandwidth limitation problem faced by radio systems. In this paper, we give a tutorial survey of the most significant issues in OWC systems that operate at short ranges such as indoor systems. We consider the challenging issues facing these systems such as (i) link design and system requirements, (ii) transmitter structures, (iii) receiver structures, (iv) challenges and possible techniques to mitigate the impairments in these systems, (v) the main applications and (vi) open research issues. In indoor OWC systems we describe channel modelling, mobility and dispersion mitigation techniques. Infrared communication (IRC) and visible light communication (VLC) are presented as potential implementation approaches for OWC systems and are comprehensively discussed. Moreover, open research issues in OWC systems are discussed

    A baseband wireless spectrum hypervisor for multiplexing concurrent OFDM signals

    Get PDF
    The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers

    High-Level System Design of IEEE 802.11b Standard-Compliant Link Layer for MATLAB-Based SDR

    Full text link
    Software defined radio (SDR) allows unprecedented levels of flexibility by transitioning the radio communication system from a rigid hardware platform to a more user-controlled software paradigm. However, it can still be time consuming to design and implement such SDRs as they typically require thorough knowledge of the operating environment and a careful tuning of the program. In this work, our contribution is the design of a bidirectional transceiver that runs on the commonly used USRP platform and implemented in MATLAB using standard tools like MATLAB Coder and MEX to speed up the processing steps. We outline strategies on how to create a state-action based design, wherein the same node switches between transmitter and receiver functions. Our design allows optimal selection of the parameters towards meeting the timing requirements set forth by various processing blocks associated with a DBPSK physical layer and CSMA/CA/ACK MAC layer so that all operations remain functionally compliant with the IEEE 802.11b standard for the 1 Mbps specification. The code base of the system is enabled through the Communications System Toolbox and incorporates channel sensing and exponential random back-off for contention resolution. The current work provides an experimental testbed that enables creation of new MAC protocols starting from the fundamental IEEE 802.11b standard. Our design approach guarantees consistent performance of the bi-directional link, and the three node experimental results demonstrate the robustness of the system in mitigating packet collisions and enforcing fairness among nodes, making it a feasible framework in higher layer protocol design.Comment: 19 pages, in press, IEEE Access Journa

    Communicating Using Spatial Mode Multiplexing: Potentials, Challenges and Perspectives

    Full text link
    Time, polarization, and wavelength multiplexing schemes have been used to satisfy the growing need of transmission capacity. Using space as a new dimension for communication systems has been recently suggested as a versatile technique to address future bandwidth issues. We review the potentials of harnessing the space as an additional degree of freedom for communication applications including free space optics, optical fiber installation, underwater wireless optical links, on-chip interconnects, data center indoor connections, radio frequency and acoustic communications. We focus on the orbital angular momentum (OAM) modes and equally identify the challenges related to each of the applications of spatial modes and the particular OAM modes in communication. We further discuss the perspectives of this emerging technology. Finally, we provide the open research directions and we discuss the practical deployment of OAM communication links for different applications

    Development of Wireless Techniques in Data and Power Transmission - Application for Particle Physics Detectors

    Full text link
    Wireless techniques have developed extremely fast over the last decade and using them for data and power transmission in particle physics detectors is not science- fiction any more. During the last years several research groups have independently thought of making it a reality. Wireless techniques became a mature field for research and new developments might have impact on future particle physics experiments. The Instrumentation Frontier was set up as a part of the SnowMass 2013 Community Summer Study [1] to examine the instrumentation R&D for the particle physics research over the coming decades: {\guillemotleft} To succeed we need to make technical and scientific innovation a priority in the field {\guillemotright}. Wireless data transmission was identified as one of the innovations that could revolutionize the transmission of data out of the detector. Power delivery was another challenge mentioned in the same report. We propose a collaboration to identify the specific needs of different projects that might benefit from wireless techniques. The objective is to provide a common platform for research and development in order to optimize effectiveness and cost, with the aim of designing and testing wireless demonstrators for large instrumentation systems

    A Comparative Survey of Optical Wireless Technologies: Architectures and Applications

    Full text link
    New high-data-rate multimedia services and applications are evolving continuously and exponentially increasing the demand for wireless capacity of fifth-generation (5G) and beyond. The existing radio frequency (RF) communication spectrum is insufficient to meet the demands of future high-datarate 5G services. Optical wireless communication (OWC), which uses an ultra-wide range of unregulated spectrum, has emerged as a promising solution to overcome the RF spectrum crisis. It has attracted growing research interest worldwide in the last decade for indoor and outdoor applications. OWC offloads huge data traffic applications from RF networks. A 100 Gb/s data rate has already been demonstrated through OWC. It offers services indoors as well as outdoors, and communication distances range from several nm to more than 10000 km. This paper provides a technology overview and a review on optical wireless technologies, such as visible light communication, light fidelity, optical camera communication, free space optical communication, and light detection and ranging. We survey the key technologies for understanding OWC and present state-of-the-art criteria in aspects, such as classification, spectrum use, architecture, and applications. The key contribution of this paper is to clarify the differences among different promising optical wireless technologies and between these technologies and their corresponding similar existing RF technologie

    Underwater Optical Wireless Communications, Networking, and Localization: A Survey

    Full text link
    Underwater wireless communications can be carried out through acoustic, radio frequency (RF), and optical waves. Compared to its bandwidth limited acoustic and RF counterparts, underwater optical wireless communications (UOWCs) can support higher data rates at low latency levels. However, severe aquatic channel conditions (e.g., absorption, scattering, turbulence, etc.) pose great challenges for UOWCs and significantly reduce the attainable communication ranges, which necessitates efficient networking and localization solutions. Therefore, we provide a comprehensive survey on the challenges, advances, and prospects of underwater optical wireless networks (UOWNs) from a layer by layer perspective which includes: 1) Potential network architectures; 2) Physical layer issues including propagation characteristics, channel modeling, and modulation techniques 3) Data link layer problems covering link configurations, link budgets, performance metrics, and multiple access schemes; 4) Network layer topics containing relaying techniques and potential routing algorithms; 5) Transport layer subjects such as connectivity, reliability, flow and congestion control; 6) Application layer goals and state-of-the-art UOWN applications, and 7) Localization and its impacts on UOWN layers. Finally, we outline the open research challenges and point out the future directions for underwater optical wireless communications, networking, and localization research.Comment: This manuscript is submitted to IEEE Communication Surveys and Tutorials for possible publicatio
    • …
    corecore