1,742 research outputs found

    Autonomous navigation strategies for UGVs/UAVs

    Get PDF

    A synthesis of logic and bio-inspired techniques in the design of dependable systems

    Get PDF
    Much of the development of model-based design and dependability analysis in the design of dependable systems, including software intensive systems, can be attributed to the application of advances in formal logic and its application to fault forecasting and verification of systems. In parallel, work on bio-inspired technologies has shown potential for the evolutionary design of engineering systems via automated exploration of potentially large design spaces. We have not yet seen the emergence of a design paradigm that effectively combines these two techniques, schematically founded on the two pillars of formal logic and biology, from the early stages of, and throughout, the design lifecycle. Such a design paradigm would apply these techniques synergistically and systematically to enable optimal refinement of new designs which can be driven effectively by dependability requirements. The paper sketches such a model-centric paradigm for the design of dependable systems, presented in the scope of the HiP-HOPS tool and technique, that brings these technologies together to realise their combined potential benefits. The paper begins by identifying current challenges in model-based safety assessment and then overviews the use of meta-heuristics at various stages of the design lifecycle covering topics that span from allocation of dependability requirements, through dependability analysis, to multi-objective optimisation of system architectures and maintenance schedules

    Anticipation and Risk – From the inverse problem to reverse computation

    Get PDF
    Abstract. Risk assessment is relevant only if it has predictive relevance. In this sense, the anticipatory perspective has yet to contribute to more adequate predictions. For purely physics-based phenomena, predictions are as good as the science describing such phenomena. For the dynamics of the living, the physics of the matter making up the living is only a partial description of their change over time. The space of possibilities is the missing component, complementary to physics and its associated predictions based on probabilistic methods. The inverse modeling problem, and moreover the reverse computation model guide anticipatory-based predictive methodologies. An experimental setting for the quantification of anticipation is advanced and structural measurement is suggested as a possible mathematics for anticipation-based risk assessment

    Applications of Decision Support System in Aviation Maintenance

    Get PDF

    Modeling the Decision Process of a Joint Task Force Commander

    Get PDF
    The U.S. military uses modeling and simulation as a tool to help meet its warfighting needs. A key element within military simulations is the ability to accurately represent human behavior. This is especially true in a simulation\u27s ability to emulate realistic military decisions. However, current decision models fail to provide the variability and flexibility that human decision makers exhibit. Further, most decision models are focused on tactical decisions and ignore the decision process of senior military commanders at the operational level of warfare. In an effort to develop a better decision model that would mimic the decision process of a senior military commander, this research sought to identify an underlying cognitive process and computational techniques that could adequately implement it. Recognition-Primed Decision making (RPD) was identified as one such model that characterized this process. Multiagent system simulation was identified as a computational system that could mimic the cognitive process identified by RPD. The result was a model of RPD called RPDAgent. Using an operational military decision scenario, decisions produced by RPDAgent were compared against decisions made by military officers. It was found that RPDAgent produced decisions that were equivalent to its human counterparts. RPDAgent\u27s decisions were not optimum decisions, but decisions that reflected the variability inherent in those made by humans in an operational military environment
    • …
    corecore