139,462 research outputs found

    Hybrid model predictive control of a residential HVAC system with PVT energy generation and PCM thermal storage

    Get PDF
    This paper describes an experimental investigation into the performance of a Hybrid Model Predictive Control (HMPC) system implemented to control a novel solar-assisted HVAC system servicing the Team UOW Solar Decathlon house, the overall winner of the Solar Decathlon China 2013 competition. This HVAC system consists of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal store integrated with a conventional ducted reverse-cycle heat pump system. The system was designed for operation during both winter and summer, using daytime solar radiation and night sky radiative cooling to increase the energy efficiency of the air-conditioning system. The PVT collector can exchange heat with the PCM thermal storage unit, and the stored heat can be used to condition the space or precondition the air entering the air handling unit (AHU). The HMPC controller includes two levels of control, where the high-level controller has a 24-hour prediction horizon and a 1-hour control step is used to select the operating mode of the HVAC system. Low-level controllers for each HVAC operational mode have a 1-hour prediction horizon and a 5-minute control step, and are used to track the trajectory defined by the high-level controller and to optimize the operating mode selected. The results from this preliminary experimental work have demonstrated the value of the HMPC approach in optimally controlling the solar-assisted HVAC system in the Solar Decathlon house. Results show that the HMPC controller successfully selected the appropriate operating mode to achieve multiple objectives, including: maintenance of indoor comfort conditions within a defined, and potentially variable, thermal comfort band; and optimization of the overall energy efficiency of the system using all available on-site energy resources

    Hybrid model predictive control of a residential HVAC system with PVT energy generation and PCM thermal storage

    Get PDF
    This paper describes an experimental investigation into the performance of a Hybrid Model Predictive Control (HMPC) system implemented to control a novel solar-assisted HVAC system servicing the Team UOW Solar Decathlon house, the overall winner of the Solar Decathlon China 2013 competition. This HVAC system consists of an air-based photovoltaic thermal (PVT) collector and a phase change material (PCM) thermal store integrated with a conventional ducted reverse-cycle heat pump system. The system was designed for operation during both winter and summer, using daytime solar radiation and night sky radiative cooling to increase the energy efficiency of the air-conditioning system. The PVT collector can exchange heat with the PCM thermal storage unit, and the stored heat can be used to condition the space or precondition the air entering the air handling unit (AHU). The HMPC controller includes two levels of control, where the high-level controller has a 24-hour prediction horizon and a 1-hour control step is used to select the operating mode of the HVAC system. Low-level controllers for each HVAC operational mode have a 1-hour prediction horizon and a 5-minute control step, and are used to track the trajectory defined by the high-level controller and to optimize the operating mode selected. The results from this preliminary experimental work have demonstrated the value of the HMPC approach in optimally controlling the solar-assisted HVAC system in the Solar Decathlon house. Results show that the HMPC controller successfully selected the appropriate operating mode to achieve multiple objectives, including: maintenance of indoor comfort conditions within a defined, and potentially variable, thermal comfort band; and optimization of the overall energy efficiency of the system using all available on-site energy resources

    Melting of PCM in a thermal energy storage unit: Numerical investigation and effect of nanoparticle enhancement

    Get PDF
    The present paper describes the analysis of the melting process in a single vertical shell-and-tube latent heat thermal energy storage (LHTES), unit and it is directed at understanding the thermal performance of the system. The study is realized using a computational fluid-dynamic (CFD) model that takes into account of the phase-change phenomenon by means of the enthalpy method. Fluid flow is fully resolved in the liquid phase-change material (PCM) in order to elucidate the role of natural convection. The unsteady evolution of the melting front and the velocity and temperature fields is detailed. Temperature profiles are analyzed and compared with experimental data available in the literature. Other relevant quantities are also monitored, including energy stored and heat flux exchanged between PCM and HTF. The results demonstrate that natural convection within PCM and inlet HTF temperature significantly affects the phase-change process. Thermal enhancement through the dispersion of highly conductive nanoparticles in the base PCM is considered in the second part of the paper. Thermal behavior of the LHTES unit charged with nano-enhanced PCM is numerically analyzed and compared with the original system configuration. Due to increase of thermal conductivity, augmented thermal performance is observed: melting time is reduced of 15% when nano-enhanced PCM with particle volume fraction of 4% is adopted. Similar improvements of the heat transfer rate are also detecte

    Analysis and design of a drain water heat recovery storage unit based on PCM plates

    Get PDF
    © 2016. This version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper is focused on the detailed analysis of a PCM plate heat storage unit with a particular configuration, looking for the maximum contact area with the fluid (water) and the minimum volume to be used in a real household application. In that sense, a numerical study of the thermal and fluid dynamic behaviour of the water flow and the PCM melting-solidification processes, together with the thermal behaviour of the solid elements of the unit, has been carried out. On the other hand, an experimental set-up has been designed and built to validate the numerical model and characterise the performance of the heat storage unit. The purpose of the numerical and experimental study is to present a series of results to describe the heat storage unit performance in function of the time. Thus, after a preliminary design study three different cases have been simulated and tested. A 7.2% of discrepancy between numerical results and experimental data has been evaluated for the heat transfer. The PCM heat storage unit designed is capable to store approx. 75% of the thermal energy from the previous process wasted water heat, and recover part of it to supply around 50% of the thermal energy required to heat up the next process.Peer ReviewedPostprint (author's final draft

    Solar Salt Latent Heat Thermal Storage for a Small Solar Organic Rankine Cycle Plant

    Get PDF
    The design of the latent heat thermal storage system (LHTESS) was developed with a thermal capacity of about 100 kW h as a part of small solar plant based on the organic Rankine cycle (ORC). The phase change material (PCM) used is solar salt with the melting/solidification temperature of about 220 °C. Thermophysical properties of the PCM were measured, including its phase transition temperature, heat of fusion, specific heat, and thermal conductivity. The design of the thermal storage was finalized by means of the 3D computational fluid dynamics analysis. The thermal storage system is modular, and the thermal energy is delivered with the use of thermal oil, heated by Fresnel mirrors. The heat is transferred into and from the PCM in the casing using bidirectional heat pipes, filled with water. A set of metallic screens are installed in the box with the pitch of 8–10 mm to enhance the heat transfer from heat pipes to the PCM and vice-versa during the charging and discharging processes, which take about 4 h. This work presents a numerical study on the use of metallic fins without thermal bonding as a heat transfer enhancement method for the solar salt LHTESS. The results show that the absence of the thermal bonding between fins and heat pipes (there was a gap of 0.5 mm between them) did not result in a significant reduction of charging or discharging periods. As expected, aluminum fins provide better performance in comparison with steel ones due to the difference in the material conductivity. The main advantage observed for the case of using aluminum fins was the lower temperature gradient across the LHTESS
    • …
    corecore