1,327 research outputs found

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    Dynamic multi-objective optimization using evolutionary algorithms

    Get PDF
    Dynamic Multi-objective Optimization Problems (DMOPs) offer an opportunity to examine and solve challenging real world scenarios where trade-off solutions between conflicting objectives change over time. Definition of benchmark problems allows modelling of industry scenarios across transport, power and communications networks, manufacturing and logistics. Recently, significant progress has been made in the variety and complexity of DMOP benchmarks and the incorporation of realistic dynamic characteristics. However, significant gaps still exist in standardised methodology for DMOPs, specific problem domain examples and in the understanding of the impacts and explanations of dynamic characteristics. This thesis provides major contributions on these three topics within evolutionary dynamic multi-objective optimization. Firstly, experimental protocols for DMOPs are varied. This limits the applicability and relevance of results produced and conclusions made in the field. A major source of the inconsistency lies in the parameters used to define specific problem instances being examined. The uninformed selection of these has historically held back understanding of their impacts and standardisation in experimental approach to these parameters in the multi-objective problem domain. Using the frequency and severity (or magnitude) of change events, a more informed approach to DMOP experimentation is conceptualized, implemented and evaluated. Establishment of a baseline performance expectation across a comprehensive range of dynamic instances for well-studied DMOP benchmarks is analyzed. To maximize relevance, these profiles are composed from the performance of evolutionary algorithms commonly used for baseline comparisons and those with simple dynamic responses. Comparison and contrast with the coverage of parameter combinations in the sampled literature highlights the importance of these contributions. Secondly, the provision of useful and realistic DMOPs in the combinatorial domain is limited in previous literature. A novel dynamic benchmark problem is presented by the extension of the Travelling Thief Problem (TTP) to include a variety of realistic and contextually justified dynamic changes. Investigation of problem information exploitation and it's potential application as a dynamic response is a key output of these results and context is provided through comparison to results obtained by adapting existing TTP heuristics. Observation driven iterative development prompted the investigation of multi-population island model strategies, together with improvements in the approaches to accurately describe and compare the performance of algorithm models for DMOPs, a contribution which is applicable beyond the dynamic TTP. Thirdly, the purpose of DMOPs is to reconstruct realistic scenarios, or features from them, to allow for experimentation and development of better optimization algorithms. However, numerous important characteristics from real systems still require implementation and will drive research and development of algorithms and mechanisms to handle these industrially relevant problem classes. The novel challenges associated with these implementations are significant and diverse, even for a simple development such as consideration of DMOPs with multiple time dependencies. Real world systems with dynamics are likely to contain multiple temporally changing aspects, particularly in energy and transport domains. Problems with more than one dynamic problem component allow for asynchronous changes and a differing severity between components that leads to an explosion in the size of the possible dynamic instance space. Both continuous and combinatorial problem domains require structured investigation into the best practices for experimental design, algorithm application and performance measurement, comparison and visualization. Highlighting the challenges, the key requirements for effective progress and recommendations on experimentation are explored here

    Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios

    Full text link
    La convergencia de las telecomunicaciones, la informática, la tecnología inalámbrica y los sistemas de transporte, va a facilitar que nuestras carreteras y autopistas nos sirvan tanto como plataforma de transporte, como de comunicaciones. Estos cambios van a revolucionar completamente cómo y cuándo vamos a acceder a determinados servicios, comunicarnos, viajar, entretenernos, y navegar, en un futuro muy cercano. Las redes vehiculares ad hoc (vehicular ad hoc networks VANETs) son redes de comunicación inalámbricas que no requieren de ningún tipo de infraestructura, y que permiten la comunicación y conducción cooperativa entre los vehículos en la carretera. Los vehículos actúan como nodos de comunicación y transmisores, formando redes dinámicas junto a otros vehículos cercanos en entornos urbanos y autopistas. Las características especiales de las redes vehiculares favorecen el desarrollo de servicios y aplicaciones atractivas y desafiantes. En esta tesis nos centramos en las aplicaciones relacionadas con la seguridad. Específicamente, desarrollamos y evaluamos un novedoso protocol que mejora la seguridad en las carreteras. Nuestra propuesta combina el uso de información de la localización de los vehículos y las características del mapa del escenario, para mejorar la diseminación de los mensajes de alerta. En las aplicaciones de seguridad para redes vehiculares, nuestra propuesta permite reducir el problema de las tormentas de difusión, mientras que se mantiene una alta efectividad en la diseminación de los mensajes hacia los vehículos cercanos. Debido a que desplegar y evaluar redes VANET supone un gran coste y una tarea dura, la metodología basada en la simulación se muestra como una metodología alternativa a la implementación real. A diferencia de otros trabajos previos, con el fin de evaluar nuestra propuesta en un entorno realista, en nuestras simulaciones tenemos muy en cuenta tanto la movilidad de los vehículos, como la transmisión de radio en entornos urbanos, especialmente cuando los edificios interfieren en la propagación de la señal de radio. Con este propósito, desarrollamos herramientas para la simulación de VANETs más precisas y realistas, mejorando tanto la modelización de la propagación de radio, como la movilidad de los vehículos, obteniendo una solución que permite integrar mapas reales en el entorno de simulación. Finalmente, evaluamos las prestaciones de nuestro protocolo propuesto haciendo uso de nuestra plataforma de simulación mejorada, evidenciando la importancia del uso de un entorno de simulación adecuado para conseguir resultados más realistas y poder obtener conclusiones más significativas.Martínez Domínguez, FJ. (2010). Improving Vehicular ad hoc Network Protocols to Support Safety Applications in Realistic Scenarios [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/9195Palanci

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing
    corecore