473 research outputs found

    Permutation flowshop scheduling by genetic local search

    Full text link

    Iterated Greedy methods for the distributed permutation flowshop scheduling problem

    Full text link
    [EN] Large manufacturing firms operate more than one production center. As a result, in relation to scheduling problems, which factory manufactures which product is an important consideration. In this paper we study an extension of the well known permutation flowshop scheduling problem in which there is a set of identical factories, each one with a flowshop structure. The objective is to minimize the maximum completion time or makespan among all factories. The resulting problem is known as the distributed permutation flowshop and has attracted considerable interest over the last few years. Contrary to the recent trend in the scheduling literature, where complex nature-inspired or metaphor-based methods are often proposed, we present simple Iterated Greedy algorithms that have performed well in related problems. Improved initialization, construction and destruction procedures, along with a local search with a strong intensification are proposed. The result is a very effective algorithm with little problem-specific knowledge that is shown to provide demonstrably better solutions in a comprehensive and thorough computational and statistical campaign.Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "SCHEYARD - Optimization of Scheduling Problems in Container Yards" (No. DPI2015-65895-R) financed by FEDER funds. Quan-Ke Pan is supported by the National Natural Science Foundation of China (Grant No. 51575212).Ruiz García, R.; Pan, Q.; Naderi, B. (2019). Iterated Greedy methods for the distributed permutation flowshop scheduling problem. Omega. 83:213-222. https://doi.org/10.1016/j.omega.2018.03.004S2132228

    Solving a flow shop scheduling problem with missing operations in an Industry 4.0 production environment

    Get PDF
    Industry 4.0 is a modern approach that aims at enhancing the connectivity between the different stages of the production process and the requirements of consumers. This paper addresses a relevant problem for both Industry 4.0 and flow shop literature: the missing operations flow shop scheduling problem. In general, in order to reduce the computational effort required to solve flow shop scheduling problems only permutation schedules (PFS) are considered, i.e., the same job sequence is used for all the machines involved. However, considering only PFS is not a constraint that is based on the real-world conditions of the industrial environments, and it is only a simplification strategy used frequently in the literature. Moreover, non-permutation (NPFS) orderings may be used for most of the real flow shop systems, i.e., different job schedules can be used for different machines in the production line, since NPFS solutions usually outperform the PFS ones. In this work, a novel mathematical formulation to minimize total tardiness and a resolution method, which considers both PFS and (the more computationally expensive) NPFS solutions, are presented to solve the flow shop scheduling problem with missing operations. The solution approach has two stages. First, a Genetic Algorithm, which only considers PFS solutions, is applied to solve the scheduling problem. The resulting solution is then improved in the second stage by means of a Simulated Annealing algorithm that expands the search space by considering NPFS solutions. The experimental tests were performed on a set of instances considering varying proportions of missing operations, as it is usual in the Industry 4.0 production environment. The results show that NPFS solutions clearly outperform PFS solutions for this problem.Fil: Rossit, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Toncovich, Adrián Andrés. Universidad Nacional del Sur. Departamento de Ingeniería; ArgentinaFil: Rossit, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Nesmachnow, Sergio. Facultad de Ingeniería; Urugua

    An integrated ACO approach for the joint production and preventive maintenance scheduling problem in the flowshop sequencing problem.

    No full text
    International audienceIn this paper, an integrated ACO approach to solve joint production and preventive maintenance scheduling problem in permutation flowshops is considered. A newly developed antcolony algorithm is proposed and analyzed for solving this problem, based on a common representation of production and maintenance data, to obtain a joint schedule that is, subsequently, improved by a new local search procedure. The goal is to optimize a common objective function which takes into account both maintenance and production criteria. We compare the results obtained with our algorithm to those of an integrated genetic algorithm developed in previous works. The results and experiments carried out indicate that the proposed ant-colony algorithm provide very effective solutions for this problem

    An efficient discrete artificial bee colony algorithm for the blocking flow shop problem with total flowtime minimization

    Get PDF
    This paper presents a high performing Discrete Artificial Bee Colony algorithm for the blocking flow shop problem with flow time criterion. To develop the proposed algorithm, we considered four strategies for the food source phase and two strategies for each of the three remaining phases (employed bees, onlookers and scouts). One of the strategies tested in the food source phase and one implemented in the employed bees phase are new. Both have been proved to be very effective for the problem at hand. The initialization scheme named HPF2(¿, µ) in particular, which is used to construct the initial food sources, is shown in the computational evaluation to be one of the main procedures that allow the DABC_RCT to obtain good solutions for this problem. To find the best configuration of the algorithm, we used design of experiments (DOE). This technique has been used extensively in the literature to calibrate the parameters of the algorithms but not to select its configuration. Comparing it with other algorithms proposed for this problem in the literature demonstrates the effectiveness and superiority of the DABC_RCTPeer ReviewedPostprint (author’s final draft

    An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan

    Full text link
    This paper deals with a variant of flowshop scheduling, namely, the hybrid or flexible flowshop with sequence dependent setup times. This type of flowshop is frequently used in the batch production industry and helps reduce the gap between research and operational use. This scheduling problem is NP-hard and solutions for large problems are based on non-exact methods. An improved genetic algorithm (GA) based on software agent design to minimise the makespan is presented. The paper proposes using an inherent characteristic of software agents to create a new perspective in GA design. To verify the developed metaheuristic, computational experiments are conducted on a well-known benchmark problem dataset. The experimental results show that the proposed metaheuristic outperforms some of the well-known methods and the state-of-art algorithms on the same benchmark problem dataset.The translation of this paper was funded by Universidad Politecnica de Valencia, Spain.Gómez Gasquet, P.; Andrés Romano, C.; Lario Esteban, FC. (2012). An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan. Expert Systems with Applications. 39(9):8095-8107. https://doi.org/10.1016/j.eswa.2012.01.158S8095810739

    Heuristics and metaheuristics for heavily constrained hybrid flowshop problems

    Full text link
    Due to the current trends in business as the necessity to have a large catalogue of products, orders that increase in frequency but not in size, globalisation and a market that is increasingly competitive, the production sector faces an ever harder economical environment. All this raises the need for production scheduling with maximum efficiency and effectiveness. The first scientific publications on production scheduling appeared more than half a century ago. However, many authors have recognised a gap between the literature and the industrial problems. Most of the research concentrates on optimisation problems that are actually a very simplified version of reality. This allows for the use of sophisticated approaches and guarantees in many cases that optimal solutions are obtained. Yet, the exclusion of real-world restrictions harms the applicability of those methods. What the industry needs are systems for optimised production scheduling that adjust exactly to the conditions in the production plant and that generates good solutions in very little time. This is exactly the objective in this thesis, that is, to treat more realistic scheduling problems and to help closing the gap between the literature and practice. The considered scheduling problem is called the hybrid flowshop problem, which consists in a set of jobs that flow through a number of production stages. At each of the stages, one of the machines that belong to the stage is visited. A series of restriction is considered that include the possibility to skip stages, non-eligible machines, precedence constraints, positive and negative time lags and sequence dependent setup times. In the literature, such a large number of restrictions has not been considered simultaneously before. Briefly, in this thesis a very realistic production scheduling problem is studied. Various optimisation methods are presented for the described scheduling problem. A mixed integer programming model is proposed, in order to obtaiUrlings ., T. (2010). Heuristics and metaheuristics for heavily constrained hybrid flowshop problems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8439Palanci
    corecore