452 research outputs found

    The Multi-engine ASP Solver ME-ASP: Progress Report

    Full text link
    MEASP is a multi-engine solver for ground ASP programs. It exploits algorithm selection techniques based on classification to select one among a set of out-of-the-box heterogeneous ASP solvers used as black-box engines. In this paper we report on (i) a new optimized implementation of MEASP; and (ii) an attempt of applying algorithm selection to non-ground programs. An experimental analysis reported in the paper shows that (i) the new implementation of \measp is substantially faster than the previous version; and (ii) the multi-engine recipe can be applied to the evaluation of non-ground programs with some benefits

    Conformant Planning as a Case Study of Incremental QBF Solving

    Get PDF
    We consider planning with uncertainty in the initial state as a case study of incremental quantified Boolean formula (QBF) solving. We report on experiments with a workflow to incrementally encode a planning instance into a sequence of QBFs. To solve this sequence of incrementally constructed QBFs, we use our general-purpose incremental QBF solver DepQBF. Since the generated QBFs have many clauses and variables in common, our approach avoids redundancy both in the encoding phase and in the solving phase. Experimental results show that incremental QBF solving outperforms non-incremental QBF solving. Our results are the first empirical study of incremental QBF solving in the context of planning and motivate its use in other application domains.Comment: added reference to extended journal article; revision (camera-ready, to appear in the proceedings of AISC 2014, volume 8884 of LNAI, Springer

    Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding

    Full text link
    Modeling textual or visual information with vector representations trained from large language or visual datasets has been successfully explored in recent years. However, tasks such as visual question answering require combining these vector representations with each other. Approaches to multimodal pooling include element-wise product or sum, as well as concatenation of the visual and textual representations. We hypothesize that these methods are not as expressive as an outer product of the visual and textual vectors. As the outer product is typically infeasible due to its high dimensionality, we instead propose utilizing Multimodal Compact Bilinear pooling (MCB) to efficiently and expressively combine multimodal features. We extensively evaluate MCB on the visual question answering and grounding tasks. We consistently show the benefit of MCB over ablations without MCB. For visual question answering, we present an architecture which uses MCB twice, once for predicting attention over spatial features and again to combine the attended representation with the question representation. This model outperforms the state-of-the-art on the Visual7W dataset and the VQA challenge.Comment: Accepted to EMNLP 201

    Conditional Image-Text Embedding Networks

    Full text link
    This paper presents an approach for grounding phrases in images which jointly learns multiple text-conditioned embeddings in a single end-to-end model. In order to differentiate text phrases into semantically distinct subspaces, we propose a concept weight branch that automatically assigns phrases to embeddings, whereas prior works predefine such assignments. Our proposed solution simplifies the representation requirements for individual embeddings and allows the underrepresented concepts to take advantage of the shared representations before feeding them into concept-specific layers. Comprehensive experiments verify the effectiveness of our approach across three phrase grounding datasets, Flickr30K Entities, ReferIt Game, and Visual Genome, where we obtain a (resp.) 4%, 3%, and 4% improvement in grounding performance over a strong region-phrase embedding baseline.Comment: ECCV 2018 accepted pape

    Partially Instantiated Representations for Automated Planning

    Get PDF

    Constraints, Lazy Constraints, or Propagators in ASP Solving: An Empirical Analysis

    Full text link
    Answer Set Programming (ASP) is a well-established declarative paradigm. One of the successes of ASP is the availability of efficient systems. State-of-the-art systems are based on the ground+solve approach. In some applications this approach is infeasible because the grounding of one or few constraints is expensive. In this paper, we systematically compare alternative strategies to avoid the instantiation of problematic constraints, that are based on custom extensions of the solver. Results on real and synthetic benchmarks highlight some strengths and weaknesses of the different strategies. (Under consideration for acceptance in TPLP, ICLP 2017 Special Issue.)Comment: Paper presented at the 33nd International Conference on Logic Programming (ICLP 2017), Melbourne, Australia, August 28 to September 1, 2017. 16 page
    corecore