138 research outputs found

    Vibration reponse analysis in orthopaedics and its application at the lumbar spine

    Get PDF
    Vibration response analysis has been carried out on human lumbar spines in-vitro and in-vivo. Random vibration in the frequency range between 20 Hz and 2 kHz was applied to the L5 spinous process in the antero-posterior direction while motion response was measured at the other spinous processes of the lumbar spine. Transfer mobility which defines the lumbar spine's motion response to vibratory force was evaluated by using the fast Fourier transform and spectral averaging technique. There was high damping during the in-vitro tests and the lumbar spine was found to behave as a segmented beam hinged at the thoracic and sacral ends. Fundamental mode shape was observed at frequencies lower than 150 Hz and this pattern was also observed with simulated fusion of the facet joints and interbody fusion. Mobility summated for the whole range of frequency could be modelled by an exponential expression. Useful parameters have been identified and they were found to relate to the lumbar spine's vibratory characteristics resulting from structural modifications. Vibration testing performed on normal subjects revealed that a relaxed lumbar spine was highly damped and non-resonant. First flexural vibration mode was observed only under the action of the back extensors. Averaged figures have been established for the coefficients of an exponential expression which fits closely to the summated mobility curve. The mobility and its attenuation coefficients in different frequency bands have been evaluated from twelve normal subjects. Localized attenuation of vibration response and the reduction in mobility were observed on a patient with osteoporotic lumbar spine. Mobility in the low frequencies was reduced while the medium and high band mobility were enhanced in patients with postero-lateral fusion and instrumentation for fixation of the lumbar spine. The attenuation pattern of these patients was consistent, and corresponded to the existence of structural enhancement.Vibration response analysis has been carried out on human lumbar spines in-vitro and in-vivo. Random vibration in the frequency range between 20 Hz and 2 kHz was applied to the L5 spinous process in the antero-posterior direction while motion response was measured at the other spinous processes of the lumbar spine. Transfer mobility which defines the lumbar spine's motion response to vibratory force was evaluated by using the fast Fourier transform and spectral averaging technique. There was high damping during the in-vitro tests and the lumbar spine was found to behave as a segmented beam hinged at the thoracic and sacral ends. Fundamental mode shape was observed at frequencies lower than 150 Hz and this pattern was also observed with simulated fusion of the facet joints and interbody fusion. Mobility summated for the whole range of frequency could be modelled by an exponential expression. Useful parameters have been identified and they were found to relate to the lumbar spine's vibratory characteristics resulting from structural modifications. Vibration testing performed on normal subjects revealed that a relaxed lumbar spine was highly damped and non-resonant. First flexural vibration mode was observed only under the action of the back extensors. Averaged figures have been established for the coefficients of an exponential expression which fits closely to the summated mobility curve. The mobility and its attenuation coefficients in different frequency bands have been evaluated from twelve normal subjects. Localized attenuation of vibration response and the reduction in mobility were observed on a patient with osteoporotic lumbar spine. Mobility in the low frequencies was reduced while the medium and high band mobility were enhanced in patients with postero-lateral fusion and instrumentation for fixation of the lumbar spine. The attenuation pattern of these patients was consistent, and corresponded to the existence of structural enhancement

    Decentralised velocity feedback control for thin homogeneous and lightweight sandwich panels

    Get PDF
    This thesis presents theoretical and experimental studies on decentralised velocity feedback control for thin homogeneous and lightweight sandwich panels. This research is motivated by the increasing interest in lightweight design for fuel efficient transportation vehicles. Lightweight sandwich panels are very appealing due to their high stiffness to weight ratio but also exhibit undesirable sound transmission properties which could cause problems with vehicle interior noise. The aim of this work is to assess the performance of decentralised velocity feedback control on lightweight sandwich panels. The first part of this thesis presents the theoretical model used to predict the structural response, sound radiation and sound transmission through active panels with decentralised velocity feedback loops. The model is then used in simulation studies on the intrinsic limitation of decentralised feedback control for thin homogeneous and sandwich active panels under distributed deterministic and stochastic excitations in the whole audio frequency range. The results suggest that decentralised velocity feedback control on lightweight sandwich panels is more efficient and can be applied over wider range of audio frequencies than for conventional thin homogeneous panels. The second part of this thesis presents experimental and simulation studies on a control system with five decentralised control units with proof-mass electrodynamic actuators, installed on conventional aluminium panel and a honeycomb sandwich panel. This study provides insight in the open and closed-loop response of the control units and gives a good understanding of the interaction between the panels and the control system. The results suggest that a practical control system that implements decentralised velocity feedback can offset some of the undesired sound transmission properties of lightweight sandwich structures by efficiently reducing structural vibration and sound power radiation in the mid audio frequency range.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Design, construction and performance of the Monash pultruded glass fibre-reinforced polymer footbridge

    Get PDF
    This paper describes the design, construction, and performance testing of the Monash Bridge (MB). The MB is a pultruded glass fibre-reinforced (pGFRP) footbridge built from individual standard pGFRP sections bonded using epoxy. The MB is designed to conform to current guidelines for GFRP footbridges in order to evaluate their performance. The design process of the MB is facilitated with numerical modelling techniques. This paper details the construction method of the MB, from which lessons that are learned may be relevant to other similar constructions. The construction process shows the potential of epoxy-bonding in practical construction of similar structures. This paper also reports on the performance of the MB, namely the static and dynamic performances. While the static performance is shown to be good, testing showed high levels of acceleration responses during walking trials, indicating that current vibration rules are not generally applicable for GFRP footbridges and that more advanced assessment of vibration serviceability should be conducted for new designs

    Vibration characteristics of 1/8-scale dynamic models of the space-shuttle solid-rocket boosters

    Get PDF
    Vibration tests and analyses of six 1/8 scale models of the space shuttle solid rocket boosters are reported. Natural vibration frequencies and mode shapes were obtained for these aluminum shell models having internal solid fuel configurations corresponding to launch, midburn (maximum dynamic pressure), and near endburn (burnout) flight conditions. Test results for longitudinal, torsional, bending, and shell vibration frequencies are compared with analytical predictions derived from thin shell theory and from finite element plate and beam theory. The lowest analytical longitudinal, torsional, bending, and shell vibration frequencies were within + or - 10 percent of experimental values. The effects of damping and asymmetric end skirts on natural vibration frequency were also considered. The analytical frequencies of an idealized full scale space shuttle solid rocket boosted structure are computed with and without internal pressure and are compared with the 1/8 scale model results

    Simultaneous measurement for material parameters using self-mixing interferometry

    Get PDF
    Material related parameters such as Young’s modulus and internal friction are important for mechanical and material engineering. These parameters play key roles in the material performances. It has been a great interest to measure the value of these parameters. Traditional methods including tensile test, flexure test, and others are destructive methods often cause damages to specimen and have low accuracy. In recent years, the impulse excitation technique (IET), a non-destructive technique to determine Young’s modulus and internal friction of the material has attracted great attention. The detection system used for IET is normally microphone, accelerometer and so on. Selfmixing interferometry (SMI), an emerging sensing technique, which is non-destructive, non-contact, compact structure, and low-cost has been developed for high accuracy sensing applications, such as displacement, velocity and distance measurement and so on is suitable for the material related parameters measurement. A normal SMI system consists of a laser diode (LD) and a target to form the external cavity of the LD. When a portion of the light is reflected or backscattered to the laser cavity, leading to a modulated laser power of LD. This modulated laser power is referred as SMI signal, which carries the information of vibration of the target. In this thesis, a measurement method combining IET with SMI for material related parameters measurement is proposed. By applying wavelet transform onto the SMI signal, both resonant frequency and damping factor of the specimen vibration can be retrieved at the same time. Therefore, both Young’s modulus and internal friction of the specimen can be calculated simultaneously. The optical fibre is introduced to the system. With the installation of the optical fibre, the flexibility of the measurement is greatly improved. The measurement results show the feasibility for simultaneous measurement of material related parameters. A graphical user interface is designed to improve the user experience for the measurement
    • …
    corecore