3,357 research outputs found

    Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting

    Full text link
    Machine learning algorithms, when applied to sensitive data, pose a distinct threat to privacy. A growing body of prior work demonstrates that models produced by these algorithms may leak specific private information in the training data to an attacker, either through the models' structure or their observable behavior. However, the underlying cause of this privacy risk is not well understood beyond a handful of anecdotal accounts that suggest overfitting and influence might play a role. This paper examines the effect that overfitting and influence have on the ability of an attacker to learn information about the training data from machine learning models, either through training set membership inference or attribute inference attacks. Using both formal and empirical analyses, we illustrate a clear relationship between these factors and the privacy risk that arises in several popular machine learning algorithms. We find that overfitting is sufficient to allow an attacker to perform membership inference and, when the target attribute meets certain conditions about its influence, attribute inference attacks. Interestingly, our formal analysis also shows that overfitting is not necessary for these attacks and begins to shed light on what other factors may be in play. Finally, we explore the connection between membership inference and attribute inference, showing that there are deep connections between the two that lead to effective new attacks

    ANCHOR: logically-centralized security for Software-Defined Networks

    Get PDF
    While the centralization of SDN brought advantages such as a faster pace of innovation, it also disrupted some of the natural defenses of traditional architectures against different threats. The literature on SDN has mostly been concerned with the functional side, despite some specific works concerning non-functional properties like 'security' or 'dependability'. Though addressing the latter in an ad-hoc, piecemeal way, may work, it will most likely lead to efficiency and effectiveness problems. We claim that the enforcement of non-functional properties as a pillar of SDN robustness calls for a systemic approach. As a general concept, we propose ANCHOR, a subsystem architecture that promotes the logical centralization of non-functional properties. To show the effectiveness of the concept, we focus on 'security' in this paper: we identify the current security gaps in SDNs and we populate the architecture middleware with the appropriate security mechanisms, in a global and consistent manner. Essential security mechanisms provided by anchor include reliable entropy and resilient pseudo-random generators, and protocols for secure registration and association of SDN devices. We claim and justify in the paper that centralizing such mechanisms is key for their effectiveness, by allowing us to: define and enforce global policies for those properties; reduce the complexity of controllers and forwarding devices; ensure higher levels of robustness for critical services; foster interoperability of the non-functional property enforcement mechanisms; and promote the security and resilience of the architecture itself. We discuss design and implementation aspects, and we prove and evaluate our algorithms and mechanisms, including the formalisation of the main protocols and the verification of their core security properties using the Tamarin prover.Comment: 42 pages, 4 figures, 3 tables, 5 algorithms, 139 reference

    On the Functional Test of Special Function Units in GPUs

    Get PDF
    The Graphics Processing Units (GPUs) usage has extended from graphic applications to others where their high computational power is exploited (e.g., to implement Artificial Intelligence algorithms). These complex applications usually need highly intensive computations based on floating-point transcendental functions. GPUs may efficiently compute these functions in hardware using ad hoc Special Function Units (SFUs). However, a permanent fault in such units could be very critical (e.g., in safety-critical automotive applications). Thus, test methodologies for SFUs are strictly required to achieve the target reliability and safety levels. In this work, we present a functional test method based on a Software-Based Self-Test (SBST) approach targeting the SFUs in GPUs. This method exploits different approaches to build a test program and applies several optimization strategies to exploit the GPU parallelism to speed up the test procedure and reduce the required memory. The effectiveness of this methodology was proven by resorting to an open-source GPU model (FlexGripPlus) compatible with NVIDIA GPUs. The experimental results show that the proposed technique achieves 90.75% of fault coverage and up to 94.26% of Testable Fault Coverage, reducing the required memory and test duration with respect to pseudorandom strategies proposed by other authors
    • …
    corecore