4,618 research outputs found

    ASlib: A Benchmark Library for Algorithm Selection

    Full text link
    The task of algorithm selection involves choosing an algorithm from a set of algorithms on a per-instance basis in order to exploit the varying performance of algorithms over a set of instances. The algorithm selection problem is attracting increasing attention from researchers and practitioners in AI. Years of fruitful applications in a number of domains have resulted in a large amount of data, but the community lacks a standard format or repository for this data. This situation makes it difficult to share and compare different approaches effectively, as is done in other, more established fields. It also unnecessarily hinders new researchers who want to work in this area. To address this problem, we introduce a standardized format for representing algorithm selection scenarios and a repository that contains a growing number of data sets from the literature. Our format has been designed to be able to express a wide variety of different scenarios. Demonstrating the breadth and power of our platform, we describe a set of example experiments that build and evaluate algorithm selection models through a common interface. The results display the potential of algorithm selection to achieve significant performance improvements across a broad range of problems and algorithms.Comment: Accepted to be published in Artificial Intelligence Journa

    The min-conflicts heuristic: Experimental and theoretical results

    Get PDF
    This paper describes a simple heuristic method for solving large-scale constraint satisfaction and scheduling problems. Given an initial assignment for the variables in a problem, the method operates by searching through the space of possible repairs. The search is guided by an ordering heuristic, the min-conflicts heuristic, that attempts to minimize the number of constraint violations after each step. We demonstrate empirically that the method performs orders of magnitude better than traditional backtracking techniques on certain standard problems. For example, the one million queens problem can be solved rapidly using our approach. We also describe practical scheduling applications where the method has been successfully applied. A theoretical analysis is presented to explain why the method works so well on certain types of problems and to predict when it is likely to be most effective

    Preprocessing versus search processing for constraint satisfaction problems

    Get PDF
    A perennial problem in hybrid backtrack CSP search is how much local consistency processing should be done to achieve the best efficiency. This can be divided into two separate questions: (1) how much work should be done before the actual search begins, i.e. during preprocessing? and (2) how much of the same processing should be interleaved with search? At present there are two leading approaches to establishing stronger consistencies than the basic arc consistency maintenance that is done in most solvers. On the one hand there are various kinds singleton arc consistency that can be used; on the other there are several variants of restricted path consistency. To date these have not been compared directly. The present work attempts to do this for a variety of problems, and in so doing, it also provides an empirical evaluation of the preprocessing versus search processing issue. Comparisons are made using the domain/degree and domain/weighted degree variable ordering heuristics. In general, it appears that preprocessing with higher levels of consistency followed by hybrid-AC processing (i.e. MAC) gives the best results, especially when the weighted degree heuristic is used. For problems with n-ary constraints, this difference seems to be even more pronounced. In some cases, higher levels of consistency maintenance established during preprocessing leads to performance gains over MAC of several orders of magnitude

    Shared Memory Parallel Subgraph Enumeration

    Full text link
    The subgraph enumeration problem asks us to find all subgraphs of a target graph that are isomorphic to a given pattern graph. Determining whether even one such isomorphic subgraph exists is NP-complete---and therefore finding all such subgraphs (if they exist) is a time-consuming task. Subgraph enumeration has applications in many fields, including biochemistry and social networks, and interestingly the fastest algorithms for solving the problem for biochemical inputs are sequential. Since they depend on depth-first tree traversal, an efficient parallelization is far from trivial. Nevertheless, since important applications produce data sets with increasing difficulty, parallelism seems beneficial. We thus present here a shared-memory parallelization of the state-of-the-art subgraph enumeration algorithms RI and RI-DS (a variant of RI for dense graphs) by Bonnici et al. [BMC Bioinformatics, 2013]. Our strategy uses work stealing and our implementation demonstrates a significant speedup on real-world biochemical data---despite a highly irregular data access pattern. We also improve RI-DS by pruning the search space better; this further improves the empirical running times compared to the already highly tuned RI-DS.Comment: 18 pages, 12 figures, To appear at the 7th IEEE Workshop on Parallel / Distributed Computing and Optimization (PDCO 2017
    • …
    corecore