2,599 research outputs found

    Cellular-Automata model for dense-snow avalanches

    Get PDF
    This paper introduces a three-dimensional model for simulating dense-snow avalanches, based on the numerical method of cellular automata. This method allows one to study the complex behavior of the avalanche by dividing it into small elements, whose interaction is described by simple laws, obtaining a reduction of the computational power needed to perform a three-dimensional simulation. Similar models by several authors have been used to model rock avalanches, mud and lava flows, and debris avalanches. A peculiar aspect of avalanche dynamics, i.e., the mechanisms of erosion of the snowpack and deposition of material from the avalanche is taken into account in the model. The capability of the proposed approach has been illustrated by modeling three documented avalanches that occurred in Susa Valley (Western Italian Alps). Despite the qualitative observations used for calibration, the proposed method is able to reproduce the correct three-dimensional avalanche path, using a digital terrain model, and the order of magnitude of the avalanche deposit volume

    Synthesising Strategy Improvement and Recursive Algorithms for Solving 2.5 Player Parity Games

    Get PDF
    2.5 player parity games combine the challenges posed by 2.5 player reachability games and the qualitative analysis of parity games. These two types of problems are best approached with different types of algorithms: strategy improvement algorithms for 2.5 player reachability games and recursive algorithms for the qualitative analysis of parity games. We present a method that - in contrast to existing techniques - tackles both aspects with the best suited approach and works exclusively on the 2.5 player game itself. The resulting technique is powerful enough to handle games with several million states

    XQuery Streaming by Forest Transducers

    Full text link
    Streaming of XML transformations is a challenging task and only very few systems support streaming. Research approaches generally define custom fragments of XQuery and XPath that are amenable to streaming, and then design custom algorithms for each fragment. These languages have several shortcomings. Here we take a more principles approach to the problem of streaming XQuery-based transformations. We start with an elegant transducer model for which many static analysis problems are well-understood: the Macro Forest Transducer (MFT). We show that a large fragment of XQuery can be translated into MFTs --- indeed, a fragment of XQuery, that can express important features that are missing from other XQuery stream engines, such as GCX: our fragment of XQuery supports XPath predicates and let-statements. We then rely on a streaming execution engine for MFTs, one which uses a well-founded set of optimizations from functional programming, such as strictness analysis and deforestation. Our prototype achieves time and memory efficiency comparable to the fastest known engine for XQuery streaming, GCX. This is surprising because our engine relies on the OCaml built in garbage collector and does not use any specialized buffer management, while GCX's efficiency is due to clever and explicit buffer management.Comment: Full version of the paper in the Proceedings of the 30th IEEE International Conference on Data Engineering (ICDE 2014

    Antichains for the Automata-Based Approach to Model-Checking

    Full text link
    We propose and evaluate antichain algorithms to solve the universality and language inclusion problems for nondeterministic Buechi automata, and the emptiness problem for alternating Buechi automata. To obtain those algorithms, we establish the existence of simulation pre-orders that can be exploited to efficiently evaluate fixed points on the automata defined during the complementation step (that we keep implicit in our approach). We evaluate the performance of the algorithm to check the universality of Buechi automata using the random automaton model recently proposed by Tabakov and Vardi. We show that on the difficult instances of this probabilistic model, our algorithm outperforms the standard ones by several orders of magnitude

    LTLf/LDLf Non-Markovian Rewards

    Get PDF
    In Markov Decision Processes (MDPs), the reward obtained in a state is Markovian, i.e., depends on the last state and action. This dependency makes it difficult to reward more interesting long-term behaviors, such as always closing a door after it has been opened, or providing coffee only following a request. Extending MDPs to handle non-Markovian reward functions was the subject of two previous lines of work. Both use LTL variants to specify the reward function and then compile the new model back into a Markovian model. Building on recent progress in temporal logics over finite traces, we adopt LDLf for specifying non-Markovian rewards and provide an elegant automata construction for building a Markovian model, which extends that of previous work and offers strong minimality and compositionality guarantees
    • …
    corecore