173 research outputs found

    Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED based Visible Light Communications

    Get PDF
    In this paper we experimentally demonstrate, for the first time, staggered carrier-less amplitude and phase (sCAP) modulation for visible light communication systems based on polymer light-emitting diodes emitting at ~639 nm. The key advantage offered by sCAP in comparison to conventional multiband CAP is its full use of the available spectrum. In this work, we compare sCAP, which utilises four orthogonal filters to generate the signal, with a conventional 4-band multi-CAP system and on-off keying (OOK). We transmit each modulation format with equal energy and present a record un-coded transmission speed of ~6 Mb/s. This represents gains of 25% and 65% over the achievable rate using 4-CAP and OOK, respectively.Comment: 6 pages, 9 figures, IEEE ICC 2019 conferenc

    Experimental demonstration of staggered cap modulation for low bandwidth red-emitting polymer-LED based visible light communications

    Get PDF
    In this paper we experimentally demonstrate, for the first time, staggered carrier-less amplitude and phase (sCAP) modulation for visible light communication systems based on polymer light-emitting diodes emitting at ∼639 nm. The key advantage offered by sCAP in comparison to conventional multiband CAP is its full use of the available spectrum. In this work, we compare sCAP, which utilises four orthogonal filters to generate the signal, with a conventional 4-band multi-CAP system and on-off keying (OOK). We transmit each modulation format with equal energy and present a record un-coded transmission speed of ∼6 Mb/s. This represents gains of 25% and 65% over the achievable rate using 4-CAP and OOK, respectively

    Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes

    Get PDF
    Visible light communication (VLC) is a wireless technology that relies on optical intensity modulation and is potentially a game changer for internet-of-things (IoT) connectivity. However, VLC is hindered by the low penetration depth of visible light in non-transparent media. One solution is to extend operation into the “nearly (in)visible” near-infrared (NIR, 700–1000 nm) region, thus also enabling VLC in photonic bio-applications, considering the biological tissue NIR semitransparency, while conveniently retaining vestigial red emission to help check the link operativity by simple eye inspection. Here, we report new far-red/NIR organic light-emitting diodes (OLEDs) with a 650–800 nm emission range and external quantum efficiencies among the highest reported in this spectral range (>2.7%, with maximum radiance and luminance of 3.5 mW/cm2 and 260 cd/m2, respectively). With these OLEDs, we then demonstrate a “real-time” VLC setup achieving a data rate of 2.2 Mb/s, which satisfies the requirements for IoT and biosensing applications. These are the highest rates ever reported for an online unequalised VLC link based on solution-processed OLEDs

    Colloidal quantum dots for guided wave photonics : from optical gain to ultrafast modulation

    Get PDF
    Silicium is gekend bij het grote publiek als de bouwsteen voor micro-elektronische circuits op 'chips'. Maar het materiaal is ook uitstekend geschikt voor het bouwen van 'fotonische' chips, waar licht in plaats van elektriciteit wordt gebruikt om informatie over te dragen. Door hetzelfde materiaal te gebruiken, kan de 'fotonica' zo reuzensprongen maken naar commercialisatie. Silicium is prima om licht geleiden en te filteren, maar schiet tekort op vlak van modulatie en versterking. In dit doctoraat worden de mogelijkheden bekeken om die tekortkomingen op te lossen met behulp van een nieuw soort materiaal: 'quantum dots' of nano-kristallen, een duizendste van een micrometer groot. Door hun waanzinnig kleine afmetingen vertonen deze bouwblokjes interessante optische eigenschappen die de limieten van silicium en de silicium-fotonica kunnen remediëren

    Optical MEMS

    Get PDF
    Optical microelectromechanical systems (MEMS), microoptoelectromechanical systems (MOEMS), or optical microsystems are devices or systems that interact with light through actuation or sensing at a micro- or millimeter scale. Optical MEMS have had enormous commercial success in projectors, displays, and fiberoptic communications. The best-known example is Texas Instruments’ digital micromirror devices (DMDs). The development of optical MEMS was impeded seriously by the Telecom Bubble in 2000. Fortunately, DMDs grew their market size even in that economy downturn. Meanwhile, in the last one and half decade, the optical MEMS market has been slowly but steadily recovering. During this time, the major technological change was the shift of thin-film polysilicon microstructures to single-crystal–silicon microsructures. Especially in the last few years, cloud data centers are demanding large-port optical cross connects (OXCs) and autonomous driving looks for miniature LiDAR, and virtual reality/augmented reality (VR/AR) demands tiny optical scanners. This is a new wave of opportunities for optical MEMS. Furthermore, several research institutes around the world have been developing MOEMS devices for extreme applications (very fine tailoring of light beam in terms of phase, intensity, or wavelength) and/or extreme environments (vacuum, cryogenic temperatures) for many years. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on (1) novel design, fabrication, control, and modeling of optical MEMS devices based on all kinds of actuation/sensing mechanisms; and (2) new developments of applying optical MEMS devices of any kind in consumer electronics, optical communications, industry, biology, medicine, agriculture, physics, astronomy, space, or defense

    Development of type II superlattice infrared detectors monolithically integrated on silicon substrates

    Get PDF
    The project’s objective is the development of an InAs/GaSb type II superlattice (T2SL) medium wavelength infrared photodiode directly grown on Si substrate for the use of an infrared single pixel photodiode. The T2SL has been selected as the replacement for the state-of-the-art CdHgTe (CMT). The use of Si substrate will help with the integration into the Si-based technology by reducing the fabrication process and costs. The T2SL is a photon detector with overlapping multiple quantum well structure and a type 2 bandgap alignment. The T2SL are fabricated using a combination of materials from the group III-V in order to achieve a well-controlled ultra-thin heterostructures using molecular beam epitaxy as a growth technique. The structure within the active region is designed to enhance the performance of the T2SL architecture by manipulating the thickness and doping of each layer. The direct growth of a T2SL structure on the Si substrate has achieved similar structural and optical properties when compared to that grown on the GaAs substrate. The Si architecture has an absorption edge of 5.365μm when measured at 70K: dark current density at -1V is 4x101A/cm2; responsivity (R) peak is 1.2A/W; quantum efficiency (QE) at -0.1V is 32.5%; and specific detectivity (D*) peak is 1x109cmHz½/W. The pπBn has best architecture over GaAs substrate due to the wide bandgap unipolar barrier. The pπBn has an absorption edge of 6.5 μm when measured at 77K: dark current density under -0.6V is 5x10-3A/cm2; R peak is 0.6A/W; QE at 0V and 3.25μm is 23%; and D* peak is 1x1011cmHz½/W. These results demonstrate that the D* of the pπBn structure is just one order of magnitude smaller than the state-of-the-art CMT detector which is 2x1012cmHz1/2W

    Developing Highly Multiplexed Technology for High-throughput Super-resolution Fluorescence Microscopy

    Get PDF
    High-Throughput imaging can reconstruct complex signalling networks, reveal unknown interactions and capture rare cellular events. Simultaneously, the development of Single Molecule Localization Super Resolution Microscopy has enabled molecular-level structural information to be obtained in a single cell. But the increase in resolution comes at a trade-off for the amount of molecular species that can be imaged and the time it takes to acquire data, all of which limit the applicability of super-resolution to high-throughput work-flows. The present work details a framework to address this. It combines three independent approaches: a microscope hardware design approach to increase the amount of data that can be obtained in a Super-Resolution experiment; an optofluidics platform that can be wholly synchronized with most microscopes; and a sequential labelling framework to increase the number of species that can be imaged in Super-Resolution in a single cell. The hardware design is validated by performing Single Molecule Localization of cytoskeleton components and its throughput is shown to be up to an order of magnitude larger than a corresponding commercial system. We demonstrate a complete optofluidics platform to integrate microfluidics with a microscope, enabling live imaging, drug application, fixation, and staining in single cells synchronized with imaging protocols. Finally, we show an efficient sequential labelling protocol that is compatible with the optofluidics platform, enabling several molecular species to be imaged in the same cells. Overall, our approach increases the speed and amount of data that can be acquired in a single of Super-Resolution experiment, as well as, by performing on-line fixation, considerably improves our capacity for High-Throughput experiments in Super-Resolution imaging

    Extending the Potential of Thin-film Optoelectronics via Optical Engineering

    Get PDF
    Optoelectronics based on nanomaterials have become a research focus in recent years, and this technology bridges the fields of solid state physics, electrical engineering and materials science. The rapid development in optoelectronic devices in the last century has both benefited from and spurred advancements in the science and engineering of pho- ton detection and manipulation, image sensing, high-efficiency and high-power-density light emission, displays, communications and renewable energy harvesting. A particu- larly promising material class for optoelectronics is colloidal nanomaterials, due to their functionality, cost -efficiency and even new physics, thanks to their exotic properties in the areas of light-matter interaction, low-dimensionality, and solution-processability which dramatically reduces the time and cost required to fabricate thin film devices, and at the same time provides wide compatibility with existing materials interfaces and device structures. This thesis focuses on exploring and assessing the capabilities of lead sulfide quantum dot-based solar cells and photodetectors. The discussion involves advances in techniques such as implementing novel photonic structures, designing and building novel characterization systems and methods, and coupling to external optical structures and components. This thesis comprises three sections. The first section focuses on the design and adap- tion of photonic structures to tailor the function and response of photovoltaics and other absorption-based optoelectronics for specific applications. in the first part, we introduce consideration of complete multi-layer thin film interference effects into the design of so- ii lar cells. By numerical calculation and optimization of the film thicknesses as well as the precise fabrication control, devices with specific target colors or optical transparency levels were achieved. In the second part, we investigate the presence of 2D photonic crystal bands in absorbing materials that can be readily incorporated into nanomaterial thin films through nanostructuring of the material. We carried out simulations and the- oretical analyses and proposed a method to realize simultaneous selectivity in the device reflection, transmission and absorption spectra that are critical for optoelectronic appli- cations. The next section focuses on designing and building a multi-modal microscopy sys- tem for thin-film optoelectronic devices, accompanied with analyses and explanation of complex experimental data. The goal of the system was to provide simultaneous 2D spatial measurements of, including but not limited to, photoluminescence spectra, time- resolved photocurrent and photovoltage responses, and a rich variety of all the possible combinations of these measurements and their associated derived quantities, collected with micrometer resolution. The multi-dimensional data helped us understand the in- tercorrelation between local defective regions in films and the entire device behavior, as well as a more comprehensive profile of mutual relationships between solar cell figures of merit. In the last section, we discuss a new implementation of miniature solar concentrator arrays for lead sulfide quantum dot solar cells. First, we design and analyze the effects of a medium concentration ratio lens-type concentrator made from polydimethylsiloxane, a flexible organosilicon polymer. The concentrators were designed and optimized with the aid of ray-tracing simulation tools to achieve the best compatibility with colloidal nanomaterial-based solar cells. Experimentally, we produced an integrated concentrator system delivering 20-fold current and power enhancements close to the theoretical pre- dictions , and also used our concentrator measurements to explain the rarely-explored carrier dynamics critical to high-power operation of thin film solar cells. Next, we de- iii sign a wide-acceptance-angle dielectric solar concentrator that can be adapted to many types of high- efficiency small-area solar cells. The design was generated using rigorous optical models that define the behaviors of light rays, and was verified with ray-tracing optical simulations to yield results for the full annual 2D time-resolved collectible power for the resulting system. Finally, we discuss strategies for further extending the possi- bilities of nanomaterial-based optoelectronics for future challenges in energy production and related applications

    Fingerprints in the Optical and Transport Properties of Quantum Dots

    Get PDF
    The book "Fingerprints in the optical and transport properties of quantum dots" provides novel and efficient methods for the calculation and investigating of the optical and transport properties of quantum dot systems. This book is divided into two sections. In section 1 includes ten chapters where novel optical properties are discussed. In section 2 involve eight chapters that investigate and model the most important effects of transport and electronics properties of quantum dot systems This is a collaborative book sharing and providing fundamental research such as the one conducted in Physics, Chemistry, Material Science, with a base text that could serve as a reference in research by presenting up-to-date research work on the field of quantum dot systems
    corecore