3,977 research outputs found

    Experimental Comparison of Semi-parametric, Parametric, and Machine Learning Models for Time-to-Event Analysis Through the Concordance Index

    Get PDF
    In this paper, we make an experimental comparison of semi-parametric (Cox proportional hazards model, Aalen's additive regression model), parametric (Weibull AFT model), and machine learning models (Random Survival Forest, Gradient Boosting with Cox Proportional Hazards Loss, DeepSurv) through the concordance index on two different datasets (PBC and GBCSG2). We present two comparisons: one with the default hyper-parameters of these models and one with the best hyper-parameters found by randomized search

    Experimental Comparison of Semi-parametric, Parametric, and Machine Learning Models for Time-to-Event Analysis Through the Concordance Index

    Get PDF
    In this paper, we make an experimental comparison of semi-parametric (Cox proportional hazards model, Aalen's additive regression model), parametric (Weibull AFT model), and machine learning models (Random Survival Forest, Gradient Boosting with Cox Proportional Hazards Loss, DeepSurv) through the concordance index on two different datasets (PBC and GBCSG2). We present two comparisons: one with the default hyper-parameters of these models and one with the best hyper-parameters found by randomized search

    Experimental Comparison of Semi-parametric, Parametric, and Machine Learning Models for Time-to-Event Analysis Through the Concordance Index

    Get PDF
    Du fait de l'épidémie de CoViD-19, les 52èmes journées de Statistique sont reportées ! Elles auront lieu du 7 au 11 Juin 2021 sur le Campus Valrose de l'Université Côte d'Azur.International audienceIn this paper, we make an experimental comparison of semi-parametric (Cox proportional hazards model, Aalen additive model), parametric (Weibull AFT model), and machine learning methods (Random Survival Forest, Gradient Boosting Cox proportional hazards loss, DeepSurv) through the concordance index on two different datasets (PBC and GBCSG2). We present two comparisons: one with the default hyperparameters of these methods and one with the best hyperparameters found by randomized search

    Novel Regression Models For High-Dimensional Survival Analysis

    Get PDF
    Survival analysis aims to predict the occurrence of specific events of interest at future time points. The presence of incomplete observations due to censoring brings unique challenges in this domain and differentiates survival analysis techniques from other standard regression methods. In this thesis, we propose four models to deal with the high-dimensional survival analysis. Firstly, we propose a regularized linear regression model with weighted least-squares to handle the survival prediction in the presence of censored instances. We employ the elastic net penalty term for inducing sparsity into the linear model to effectively handle high-dimensional data. As opposed to the existing censored linear models, the parameter estimation of our model does not need any prior estimation of survival times of censored instances. The second model we proposed is a unified model for regularized parametric survival regression for an arbitrary survival distribution. We employ a generalized linear model to approximate the negative log-likelihood and use the elastic net as a sparsity-inducing penalty to effectively deal with high-dimensional data. The proposed model is then formulated as a penalized iteratively reweighted least squares and solved using a cyclical coordinate descent-based method.Considering the fact that the popularly used survival analysis methods such as Cox proportional hazard model and parametric survival regression suffer from some strict assumptions and hypotheses that are not realistic in many real-world applications. we reformulate the survival analysis problem as a multi-task learning problem in the third model which predicts the survival time by estimating the survival status at each time interval during the study duration. We propose an indicator matrix to enable the multi-task learning algorithm to handle censored instances and incorporate some of the important characteristics of survival problems such as non-negative non-increasing list structure into our model through max-heap projection. And the proposed formulation is solved via an Alternating Direction Method of Multipliers (ADMM) based algorithm. Besides above three methods which aim at solving standard survival prediction problem, we also propose a transfer learning model for survival analysis. During our study, we noticed that obtaining sufficient labeled training instances for learning a robust prediction model is a very time consuming process and can be extremely difficult in practice. Thus, we proposed a Cox based model which uses the L2,1-norm penalty to encourage source predictors and target predictors share similar sparsity patterns and hence learns a shared representation across source and target domains to improve the model performance on the target task. We demonstrate the performance of the proposed models using several real-world high-dimensional biomedical benchmark datasets and our experimental results indicate that our model outperforms other state-of-the-art related competing methods and attains very competitive performance on various datasets

    Radiomics risk modelling using machine learning algorithms for personalised radiation oncology

    Get PDF
    One major objective in radiation oncology is the personalisation of cancer treatment. The implementation of this concept requires the identification of biomarkers, which precisely predict therapy outcome. Besides molecular characterisation of tumours, a new approach known as radiomics aims to characterise tumours using imaging data. In the context of the presented thesis, radiomics was established at OncoRay to improve the performance of imaging-based risk models. Two software-based frameworks were developed for image feature computation and risk model construction. A novel data-driven approach for the correction of intensity non-uniformity in magnetic resonance imaging data was evolved to improve image quality prior to feature computation. Further, different feature selection methods and machine learning algorithms for time-to-event survival data were evaluated to identify suitable algorithms for radiomics risk modelling. An improved model performance could be demonstrated using computed tomography data, which were acquired during the course of treatment. Subsequently tumour sub-volumes were analysed and it was shown that the tumour rim contains the most relevant prognostic information compared to the corresponding core. The incorporation of such spatial diversity information is a promising way to improve the performance of risk models.:1. Introduction 2. Theoretical background 2.1. Basic physical principles of image modalities 2.1.1. Computed tomography 2.1.2. Magnetic resonance imaging 2.2. Basic principles of survival analyses 2.2.1. Semi-parametric survival models 2.2.2. Full-parametric survival models 2.3. Radiomics risk modelling 2.3.1. Feature computation framework 2.3.2. Risk modelling framework 2.4. Performance assessments 2.5. Feature selection methods and machine learning algorithms 2.5.1. Feature selection methods 2.5.2. Machine learning algorithms 3. A physical correction model for automatic correction of intensity non-uniformity in magnetic resonance imaging 3.1. Intensity non-uniformity correction methods 3.2. Physical correction model 3.2.1. Correction strategy and model definition 3.2.2. Model parameter constraints 3.3. Experiments 3.3.1. Phantom and simulated brain data set 3.3.2. Clinical brain data set 3.3.3. Abdominal data set 3.4. Summary and discussion 4. Comparison of feature selection methods and machine learning algorithms for radiomics time-to-event survival models 4.1. Motivation 4.2. Patient cohort and experimental design 4.2.1. Characteristics of patient cohort 4.2.2. Experimental design 4.3. Results of feature selection methods and machine learning algorithms evaluation 4.4. Summary and discussion 5. Characterisation of tumour phenotype using computed tomography imaging during treatment 5.1. Motivation 5.2. Patient cohort and experimental design 5.2.1. Characteristics of patient cohort 5.2.2. Experimental design 5.3. Results of computed tomography imaging during treatment 5.4. Summary and discussion 6. Tumour phenotype characterisation using tumour sub-volumes 6.1. Motivation 6.2. Patient cohort and experimental design 6.2.1. Characteristics of patient cohorts 6.2.2. Experimental design 6.3. Results of tumour sub-volumes evaluation 6.4. Summary and discussion 7. Summary and further perspectives 8. Zusammenfassun
    corecore