15,579 research outputs found

    Exploratory topic modeling with distributional semantics

    Full text link
    As we continue to collect and store textual data in a multitude of domains, we are regularly confronted with material whose largely unknown thematic structure we want to uncover. With unsupervised, exploratory analysis, no prior knowledge about the content is required and highly open-ended tasks can be supported. In the past few years, probabilistic topic modeling has emerged as a popular approach to this problem. Nevertheless, the representation of the latent topics as aggregations of semi-coherent terms limits their interpretability and level of detail. This paper presents an alternative approach to topic modeling that maps topics as a network for exploration, based on distributional semantics using learned word vectors. From the granular level of terms and their semantic similarity relations global topic structures emerge as clustered regions and gradients of concepts. Moreover, the paper discusses the visual interactive representation of the topic map, which plays an important role in supporting its exploration.Comment: Conference: The Fourteenth International Symposium on Intelligent Data Analysis (IDA 2015

    Using term clouds to represent segment-level semantic content of podcasts

    Get PDF
    Spoken audio, like any time-continuous medium, is notoriously difficult to browse or skim without support of an interface providing semantically annotated jump points to signal the user where to listen in. Creation of time-aligned metadata by human annotators is prohibitively expensive, motivating the investigation of representations of segment-level semantic content based on transcripts generated by automatic speech recognition (ASR). This paper examines the feasibility of using term clouds to provide users with a structured representation of the semantic content of podcast episodes. Podcast episodes are visualized as a series of sub-episode segments, each represented by a term cloud derived from a transcript generated by automatic speech recognition (ASR). Quality of segment-level term clouds is measured quantitatively and their utility is investigated using a small-scale user study based on human labeled segment boundaries. Since the segment-level clouds generated from ASR-transcripts prove useful, we examine an adaptation of text tiling techniques to speech in order to be able to generate segments as part of a completely automated indexing and structuring system for browsing of spoken audio. Results demonstrate that the segments generated are comparable with human selected segment boundaries

    Modeling Empathy and Distress in Reaction to News Stories

    Full text link
    Computational detection and understanding of empathy is an important factor in advancing human-computer interaction. Yet to date, text-based empathy prediction has the following major limitations: It underestimates the psychological complexity of the phenomenon, adheres to a weak notion of ground truth where empathic states are ascribed by third parties, and lacks a shared corpus. In contrast, this contribution presents the first publicly available gold standard for empathy prediction. It is constructed using a novel annotation methodology which reliably captures empathy assessments by the writer of a statement using multi-item scales. This is also the first computational work distinguishing between multiple forms of empathy, empathic concern, and personal distress, as recognized throughout psychology. Finally, we present experimental results for three different predictive models, of which a CNN performs the best.Comment: To appear at EMNLP 201

    Deep Learning Relevance: Creating Relevant Information (as Opposed to Retrieving it)

    Full text link
    What if Information Retrieval (IR) systems did not just retrieve relevant information that is stored in their indices, but could also "understand" it and synthesise it into a single document? We present a preliminary study that makes a first step towards answering this question. Given a query, we train a Recurrent Neural Network (RNN) on existing relevant information to that query. We then use the RNN to "deep learn" a single, synthetic, and we assume, relevant document for that query. We design a crowdsourcing experiment to assess how relevant the "deep learned" document is, compared to existing relevant documents. Users are shown a query and four wordclouds (of three existing relevant documents and our deep learned synthetic document). The synthetic document is ranked on average most relevant of all.Comment: Neu-IR '16 SIGIR Workshop on Neural Information Retrieval, July 21, 2016, Pisa, Ital

    Multi-Modal Multi-Scale Deep Learning for Large-Scale Image Annotation

    Full text link
    Image annotation aims to annotate a given image with a variable number of class labels corresponding to diverse visual concepts. In this paper, we address two main issues in large-scale image annotation: 1) how to learn a rich feature representation suitable for predicting a diverse set of visual concepts ranging from object, scene to abstract concept; 2) how to annotate an image with the optimal number of class labels. To address the first issue, we propose a novel multi-scale deep model for extracting rich and discriminative features capable of representing a wide range of visual concepts. Specifically, a novel two-branch deep neural network architecture is proposed which comprises a very deep main network branch and a companion feature fusion network branch designed for fusing the multi-scale features computed from the main branch. The deep model is also made multi-modal by taking noisy user-provided tags as model input to complement the image input. For tackling the second issue, we introduce a label quantity prediction auxiliary task to the main label prediction task to explicitly estimate the optimal label number for a given image. Extensive experiments are carried out on two large-scale image annotation benchmark datasets and the results show that our method significantly outperforms the state-of-the-art.Comment: Submited to IEEE TI

    Mixing Metaphors In The Cerebral Hemispheres: What Happens When Careers Collide?

    Get PDF
    Are processes of figurative comparison and figurative categorization different? An experiment combining alternative-sense and matched-sense metaphor priming with a divided visual field assessment technique sought to isolate processes of comparison and categorization in the 2 cerebral hemispheres. For target metaphors presented in the right visual field/left cerebral hemisphere (RVF/LH), only matched-sense primes were facilitative. Literal primes and alternative-sense primes had no effect on comprehension time compared to the unprimed baseline. The effects of matched-sense primes were additive with the rated conventionality of the targets. For target metaphors presented to the left visual field/right cerebral hemisphere (LVF/RH), matched-sense primes were again additively facilitative. However, alternative-sense primes, though facilitative overall, seemed to eliminate the preexisting advantages of conventional target metaphor senses in the LVF/RH in favor of metaphoric senses similar to those of the primes. These findings are consistent with tightly controlled categorical coding in the LH and coarse, flexible, context-dependent coding in the RH. (PsycINFO Database Record (c) 2013 APA, all rights reserved)(journal abstract
    corecore