3,434 research outputs found

    Dynamic assertion testing of flight control software

    Get PDF
    Digital Flight Control System (DFCS) software was used as a test case for assertion testing. The assertions were written and embedded in the code, then errors were inserted (seeded) one at a time and the code executed. Results indicate that assertion testing is an effective and efficient method of detecting errors in flight software. Most errors are eliminate at an earlier stage in the development than before

    Study of fault-tolerant software technology

    Get PDF
    Presented is an overview of the current state of the art of fault-tolerant software and an analysis of quantitative techniques and models developed to assess its impact. It examines research efforts as well as experience gained from commercial application of these techniques. The paper also addresses the computer architecture and design implications on hardware, operating systems and programming languages (including Ada) of using fault-tolerant software in real-time aerospace applications. It concludes that fault-tolerant software has progressed beyond the pure research state. The paper also finds that, although not perfectly matched, newer architectural and language capabilities provide many of the notations and functions needed to effectively and efficiently implement software fault-tolerance

    Energy efficient transport technology: Program summary and bibliography

    Get PDF
    The Energy Efficient Transport (EET) Program began in 1976 as an element of the NASA Aircraft Energy Efficiency (ACEE) Program. The EET Program and the results of various applications of advanced aerodynamics and active controls technology (ACT) as applicable to future subsonic transport aircraft are discussed. Advanced aerodynamics research areas included high aspect ratio supercritical wings, winglets, advanced high lift devices, natural laminar flow airfoils, hybrid laminar flow control, nacelle aerodynamic and inertial loads, propulsion/airframe integration (e.g., long duct nacelles) and wing and empennage surface coatings. In depth analytical/trade studies, numerous wind tunnel tests, and several flight tests were conducted. Improved computational methodology was also developed. The active control functions considered were maneuver load control, gust load alleviation, flutter mode control, angle of attack limiting, and pitch augmented stability. Current and advanced active control laws were synthesized and alternative control system architectures were developed and analyzed. Integrated application and fly by wire implementation of the active control functions were design requirements in one major subprogram. Additional EET research included interdisciplinary technology applications, integrated energy management, handling qualities investigations, reliability calculations, and economic evaluations related to fuel savings and cost of ownership of the selected improvements

    Avionics and controls research and technology

    Get PDF
    The workshop provided a forum for industry and universities to discuss the state-of-the-art, identify the technology needs and opportunities, and describe the role of NASA in avionics and controls research

    A Comparative Study of Hadoop MapReduce, Apache Spark & Apache Flink for Data Science

    Get PDF
    Distributed data processing platforms for cloud computing are important tools for large-scale data analytics. Apache Hadoop MapReduce has become the de facto standard in this space, though its programming interface is relatively low-level, requiring many implementation steps even for simple analysis tasks. This has led to the development of advanced dataflow oriented platforms, most prominently Apache Spark and Apache Flink. Those not only aim to improve performance, but also provide high-level data processing functionality, such as filtering and join operators, which should make data analysis tasks easier to develop. But without comparison data available, how would data scientists know which system they should choose? This research compares: Apache Hadoop MapReduce; Apache Spark; and Apache Flink, from the perspectives of performance, usability and practicality for batch-oriented data analytics. We propose and apply a methodology which guides the conception of multidimensional software comparisons and the presentation of their results. The methodology was effective, providing direction and structure to the comparison, and should serve as helpful for future comparisons. The results confirm that Spark and Flink are superior to Hadoop MapReduce in performance and usability. Spark and Flink were similar in all three considerations, however as per the methodology, readers have the flexibility to adjust weightings to their needs, which could differentiate them. We also report on the design, execution and results of a large-scale usability study with a cohort of masters students, who learn and work with all three platforms, solving different use cases in data science contexts. Our findings show that Spark and Flink are preferred platforms over MapReduce. Among participants, there was no significant difference in perceived preference or development time between both Spark and Flink. These results were included in the usability component of the multidimensional comparison

    Technology for an intelligent, free-flying robot for crew and equipment retrieval in space

    Get PDF
    Crew rescue and equipment retrieval is a Space Station Freedom requirement. During Freedom's lifetime, there is a high probability that a number of objects will accidently become separated. Members of the crew, replacement units, and key tools are examples. Retrieval of these objects within a short time is essential. Systems engineering studies were conducted to identify system requirements and candidate approaches. One such approach, based on a voice-supervised, intelligent, free-flying robot was selected for further analysis. A ground-based technology demonstration, now in its second phase, was designed to provide an integrated robotic hardware and software testbed supporting design of a space-borne system. The ground system, known as the EVA Retriever, is examining the problem of autonomously planning and executing a target rendezvous, grapple, and return to base while avoiding stationary and moving obstacles. The current prototype is an anthropomorphic manipulator unit with dexterous arms and hands attached to a robot body and latched in a manned maneuvering unit. A precision air-bearing floor is used to simulate space. Sensor data include two vision systems and force/proximity/tactile sensors on the hands and arms. Planning for a shuttle file experiment is underway. A set of scenarios and strawman requirements were defined to support conceptual development. Initial design activities are expected to begin in late 1989 with the flight occurring in 1994. The flight hardware and software will be based on lessons learned from both the ground prototype and computer simulations
    corecore