37 research outputs found

    Towards joint decoding of binary Tardos fingerprinting codes

    Get PDF
    The class of joint decoder of probabilistic fingerprinting codes is of utmost importance in theoretical papers to establish the concept of fingerprint capacity. However, no implementation supporting a large user base is known to date. This article presents an iterative decoder which is, as far as we are aware of, the first practical attempt towards joint decoding. The discriminative feature of the scores benefits on one hand from the side-information of previously accused users, and on the other hand, from recently introduced universal linear decoders for compound channels. Neither the code construction nor the decoder make precise assumptions about the collusion (size or strategy). The extension to incorporate soft outputs from the watermarking layer is straightforward. An extensive experimental work benchmarks the very good performance and offers a clear comparison with previous state-of-the-art decoders.Comment: submitted to IEEE Trans. on Information Forensics and Security. - typos corrected, one new plot, references added about ECC based fingerprinting code

    Joint 1D and 2D Neural Networks for Automatic Modulation Recognition

    Get PDF
    The digital communication and radar community has recently manifested more interest in using data-driven approaches for tasks such as modulation recognition, channel estimation and distortion correction. In this research we seek to apply an object detector for parameter estimation to perform waveform separation in the time and frequency domain prior to classification. This enables the full automation of detecting and classifying simultaneously occurring waveforms. We leverage a lD ResNet implemented by O\u27Shea et al. in [1] and the YOLO v3 object detector designed by Redmon et al. in [2]. We conducted an in depth study of the performance of these architectures and integrated the models to perform joint detection and classification. To our knowledge, the present research is the first to study and successfully combine a lD ResNet classifier and Yolo v3 object detector to fully automate the process of AMR for parameter estimation, pulse extraction and waveform classification for non-cooperative scenarios. The overall performance of the joint detector/ classifier is 90 at 10 dB signal to noise ratio for 24 digital and analog modulations

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks

    Neural-network-aided automatic modulation classification

    Get PDF
    Automatic modulation classification (AMC) is a pattern matching problem which significantly impacts divers telecommunication systems, with significant applications in military and civilian contexts alike. Although its appearance in the literature is far from novel, recent developments in machine learning technologies have triggered an increased interest in this area of research. In the first part of this thesis, an AMC system is studied where, in addition to the typical point-to-point setup of one receiver and one transmitter, a second transmitter is also present, which is considered an interfering device. A convolutional neural network (CNN) is used for classification. In addition to studying the effect of interference strength, we propose a modification attempting to leverage some of the debilitating results of interference, and also study the effect of signal quantisation upon classification performance. Consequently, we assess a cooperative setting of AMC, namely one where the receiver features multiple antennas, and receives different versions of the same signal from the single-antenna transmitter. Through the combination of data from different antennas, it is evidenced that this cooperative approach leads to notable performance improvements over the established baseline. Finally, the cooperative scenario is expanded to a more complicated setting, where a realistic geographic distribution of four receiving nodes is modelled, and furthermore, the decision-making mechanism with regard to the identity of a signal resides in a fusion centre independent of the receivers, connected to them over finite-bandwidth backhaul links. In addition to the common concerns over classification accuracy and inference time, data reduction methods of various types (including “trained” lossy compression) are implemented with the objective of minimising the data load placed upon the backhaul links.Open Acces

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    corecore