12 research outputs found

    Verifying the Safety of a Flight-Critical System

    Full text link
    This paper describes our work on demonstrating verification technologies on a flight-critical system of realistic functionality, size, and complexity. Our work targeted a commercial aircraft control system named Transport Class Model (TCM), and involved several stages: formalizing and disambiguating requirements in collaboration with do- main experts; processing models for their use by formal verification tools; applying compositional techniques at the architectural and component level to scale verification. Performed in the context of a major NASA milestone, this study of formal verification in practice is one of the most challenging that our group has performed, and it took several person months to complete it. This paper describes the methodology that we followed and the lessons that we learned.Comment: 17 pages, 5 figure

    Formal Methods Case Studies for DO-333

    Get PDF
    RTCA DO-333, Formal Methods Supplement to DO-178C and DO-278A provides guidance for software developers wishing to use formal methods in the certification of airborne systems and air traffic management systems. The supplement identifies the modifications and additions to DO-178C and DO-278A objectives, activities, and software life cycle data that should be addressed when formal methods are used as part of the software development process. This report presents three case studies describing the use of different classes of formal methods to satisfy certification objectives for a common avionics example - a dual-channel Flight Guidance System. The three case studies illustrate the use of theorem proving, model checking, and abstract interpretation. The material presented is not intended to represent a complete certification effort. Rather, the purpose is to illustrate how formal methods can be used in a realistic avionics software development project, with a focus on the evidence produced that could be used to satisfy the verification objectives found in Section 6 of DO-178C

    Optimal Analysis of Discrete-time Affine Systems

    Full text link
    Our very first concern is the resolution of the verification problem for the class of discrete-time affine dynamical systems. This verification problem is turned into an optimization problem where the constraint set is the reachable values set of the dynamical system. To solve this optimization problem, we truncate the infinite sequences belonging to the reachable values set at some step which is uniform with respect to the initial conditions. In theory, the best possible uniform step is the optimal solution of a non-convex semi-definite program. In practice, we propose a methodology to compute a uniform step that over-approximate the best solution.Comment: 16 page

    Formal verification, scientific code, and the epistemological heterogeneity of computational science

    Get PDF
    Various errors can affect scientific code and detecting them is a central concern within computational science. Could formal verification methods, which are now available tools, be widely adopted to guarantee the general reliability of scientific code? After discussing their benefits and drawbacks, we claim that, absent significant changes as regards features like their user-friendliness and versatility, these methods are unlikely to be adopted throughout computational science, beyond certain specific contexts for which they are well-suited. This issue exemplifies the epistemological heterogeneity of computational science: profoundly different practices can be appropriate to meet the reliability challenge that rises for scientific code

    Analyse statique des systèmes de contrôle-commande : invariants entiers et flottants

    Get PDF
    A critical software is a software whose malfunction may result in death or serious injury to people, loss or severe damage to equipment or environmental harm.Software engineering for critical systems is particularly difficult, and combines different methods to ensure the quality of produced software.Among them, formal methods can be used to prove that a software obeys its specifications.This thesis falls within the context of the validation of safety properties for critical software, and more specifically, of numerical properties for embedded software in control-command systems.The first part of this thesis deals with Lyapunov stability proofs.These proofs rely on computations with real numbers, and do not accurately describe the behavior of a program run on a platform with machine arithmetic.We introduce a generic, theoretical framework to adapt the arguments of Lyapunov stability proofs to machine arithmetic.A tool automatically translates the proof on real numbers to a proof with floating-point numbers.The second part of the thesis focuses on linear relation analysis, using an abstract interpretation based on the approximation by convex polyhedrons of valuations associated with each control point in a program.We present ALICe, a framework to compare different invariant generation techniques.It comes with a collection of test cases taken from the program analysis literature, and interfaces with three tools, that rely on different algorithms to compute invariants: Aspic, iscc and PIPS.To refine PIPS results, two code restructuring techniques are introduced, and several improvements are made to the invariant generation algorithms and evaluated using ALICe.Un logiciel critique est un logiciel dont le mauvais fonctionnement peut avoir un impact important sur la sécurité ou la vie des personnes, des entreprises ou des biens.L'ingénierie logicielle pour les systèmes critiques est particulièrement difficile et combine différentes méthodes pour garantir la qualité des logiciels produits.Parmi celles-ci, les méthodes formelles peuvent être utilisées pour prouver qu'un logiciel respecte ses spécifications.Le travail décrit dans cette thèse s'inscrit dans le contexte de la validation de propriétés de sûreté de programmes critiques, et plus particulièrement des propriétés numériques de logiciels embarqués dans des systèmes de contrôle-commande.La première partie de cette thèse est consacrée aux preuves de stabilité au sens de Lyapunov.Ces preuves s'appuient sur des calculs en nombres réels, et ne sont pas valables pour décrire le comportement d'un programme exécuté sur une plateforme à arithmétique machine.Nous présentons un cadre théorique générique pour adapter les arguments des preuves de stabilité de Lyapunov aux arithmétiques machine.Un outil effectue automatiquement la traduction de la preuve en nombres réels vers une preuve en nombres a virgule flottante.La seconde partie de la thèse porte sur l'analyse des relations affines, en utilisant une interprétation abstraite basée sur l'approximation des valuations associées aux points de contrôle d'un programme par des polyèdres convexes.Nous présentons ALICe, un framework permettant de comparer différentes techniques de génération d'invariants.Il s'accompagne d'une collection de cas de tests tirés de publications sur l'analyse de programmes, et s'interface avec trois outils utilisant différents algorithmes de calcul d'invariants: Aspic, iscc et PIPS.Afin d'affiner les résultats de PIPS, deux techniques de restructuration de code sont introduites, et plusieurs améliorations sont apportées aux algorithmes de génération d'invariants et évaluées à l'aide d'ALICe

    Verasco: un analyseur statique pour C formellement vérifié

    Get PDF
    In order to develop safer software for critical applications, some static analyzers aim at establishing, with mathematical certitude, the absence of some classes of bug in the input program. A possible limit to this approach is the possibility of a soundness bug in the static analyzer itself, which would nullify the guarantees it is supposed to deliver.In this thesis, we propose to establish formal guarantees on the static analyzer itself: we present the design, implementation and proof of soundness using Coq of Verasco, a formally verified static analyzer based on abstract interpretation handling most of the ISO C99 language, including IEEE754 floating-point arithmetic (except recursion and dynamic memory allocation). Verasco aims at establishing the absence of erroneous behavior of the given programs. It enjoys a modular extendable architecture with several abstract domains and well-specified interfaces. We present the abstract iterator of Verasco, its handling of bounded machine arithmetic, its interval abstract domain, its symbolic abstract domain and its abstract domain of octagons. Verasco led to the development of new techniques for implementing data structure with sharing in Coq.Afin de développer des logiciels plus sûrs pour des applications critiques, certains analyseurs statiques tentent d'établir, avec une certitude mathématique, l'absence de certains types de bugs dans un programme donné. Une limite possible à cette approche est l'éventualité d'un bug affectant la correction de l'analyseur lui-même, éliminant ainsi les garanties qu'il est censé apporter.Dans cette thèse, nous proposons d'établir des garanties formelles sur l'analyseur lui-même : nous présentons la conception, l'implantation et la preuve de sûreté en Coq de Verasco, un analyseur statique formellement vérifié utilisant l'interprétation abstraite pour le langage ISO C99 avec l'arithmétique flottante IEEE754 (à l'exception de la récursion et de l'allocation dynamique de mémoire). Verasco a pour but d'établir l'absence d'erreur à l'exécution des programmes donnés. Il est conçu selon une architecture modulaire et extensible contenant plusieurs domaines abstraits et des interfaces bien spécifiées. Nous détaillons le fonctionnement de l'itérateur abstrait de Verasco, son traitement des entiers bornés de la machine, son domaine abstrait d'intervalles, son domaine abstrait symbolique et son domaine abstrait d'octogones. Verasco a donné lieu au développement de nouvelles techniques pour implémenter des structures de données avec partage dans Coq

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    Proceedings of the Second NASA Formal Methods Symposium

    Get PDF
    This publication contains the proceedings of the Second NASA Formal Methods Symposium sponsored by the National Aeronautics and Space Administration and held in Washington D.C. April 13-15, 2010. Topics covered include: Decision Engines for Software Analysis using Satisfiability Modulo Theories Solvers; Verification and Validation of Flight-Critical Systems; Formal Methods at Intel -- An Overview; Automatic Review of Abstract State Machines by Meta Property Verification; Hardware-independent Proofs of Numerical Programs; Slice-based Formal Specification Measures -- Mapping Coupling and Cohesion Measures to Formal Z; How Formal Methods Impels Discovery: A Short History of an Air Traffic Management Project; A Machine-Checked Proof of A State-Space Construction Algorithm; Automated Assume-Guarantee Reasoning for Omega-Regular Systems and Specifications; Modeling Regular Replacement for String Constraint Solving; Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol; Can Regulatory Bodies Expect Efficient Help from Formal Methods?; Synthesis of Greedy Algorithms Using Dominance Relations; A New Method for Incremental Testing of Finite State Machines; Verification of Faulty Message Passing Systems with Continuous State Space in PVS; Phase Two Feasibility Study for Software Safety Requirements Analysis Using Model Checking; A Prototype Embedding of Bluespec System Verilog in the PVS Theorem Prover; SimCheck: An Expressive Type System for Simulink; Coverage Metrics for Requirements-Based Testing: Evaluation of Effectiveness; Software Model Checking of ARINC-653 Flight Code with MCP; Evaluation of a Guideline by Formal Modelling of Cruise Control System in Event-B; Formal Verification of Large Software Systems; Symbolic Computation of Strongly Connected Components Using Saturation; Towards the Formal Verification of a Distributed Real-Time Automotive System; Slicing AADL Specifications for Model Checking; Model Checking with Edge-valued Decision Diagrams; and Data-flow based Model Analysis
    corecore