13 research outputs found

    Experimental Analysis of the Efficiency of Shared Access in IEEE802.15.4-TSCH Networks with Sporadic Traffic

    Get PDF
    International audienceIndustrial wireless networks are now used in many applications, and require to fulfill a certain set of requirements to operate properly. IEEE802.15.4-TSCH is considered a suitable solution to provide real time multihop transmissions in noisy and harsh environments. The standard relies on a strict schedule of the transmissions to reduce the radio duty cycle ratio. While constructing a schedule for periodic traffic has been widely studied in the past, we focus here on the aperiodic, sporadic case. We have to multiplex the transmissions in the schedule to reduce the energy consumption while limiting the number of collisions to provide still high reliability. We propose here to study experimentally the performance of TSCH with shared access and bursty arrivals. Then, we demonstrate how to re-adapt the scheduler to better deal with unpredictable traffic. By performing experiments, we can predict the optimal number of transmitters in a shared cell. Thus, we can overcome collisions and packets drops in complex scenarios where bursty traffic is required

    Vulnerabilities of the 6P protocol for the Industrial Internet of Things: Impact analysis and mitigation

    Get PDF
    The 6TiSCH architecture defined by the IETF provides a standard solution for extending the Internet of Things (IoT) paradigm to industrial applications with stringent reliability and timeliness requirements. In this context, communication security is another crucial requirement, which is currently less investigated in the literature. In this article, we present a deep assessment of the security vulnerabilities of 6P, the protocol used for resource negotiation at the core of the 6TiSCH architecture. Specifically, we highlight two possible attacks against 6P, namely the Traffic Dispersion and the Overloading attacks. These two attacks effectively and stealthy alter the communication schedule of victim nodes and severely thwart network basic functionalities and efficiency, by specifically impacting network availability and energy consumption of victim nodes. To assess the impact of the attacks two analytical models have been defined, while, to demonstrate their feasibility, they have been implemented in Contiki-NG. The implementation has been used to quantitatively evaluate the impact of the two attacks by both simulations and measurements in a real testbed. Our results show that the impact of both attacks may be very significant. The impact, however, strongly depends on the position of the victim node(s) in the network and it is highly influenced by the dynamics of the routing protocol. We have investigated mitigation strategies to alleviate this impact and proposed an extended version of the Minimal Scheduling Function (MSF), i.e., the reference scheduling algorithm for 6TiSCH. This allows network nodes to early detect anomalies in their schedules possibly due to an Overloading attack, and thus curb the attack impact by appropriately revising their schedule

    Collaborative, Intelligent, and Adaptive Systems for the Low-Power Internet of Things

    Get PDF
    With the emergence of the Internet of Things (IoT), more and more devices are getting equipped with communication capabilities, often via wireless radios. Their deployments pave the way for new and mission-critical applications: cars will communicate with nearby vehicles to coordinate at intersections; industrial wireless closed-loop systems will improve operational safety in factories; while swarms of drones will coordinate to plan collision-free trajectories. To achieve these goals, IoT devices will need to communicate, coordinate, and collaborate over the wireless medium. However, these envisioned applications necessitate new characteristics that current solutions and protocols cannot fulfill: IoT devices require consistency guarantees from their communication and demand for adaptive behavior in complex and dynamic environments.In this thesis, we design, implement, and evaluate systems and mechanisms to enable safe coordination and adaptivity for the smallest IoT devices. To ensure consistent coordination, we bring fault-tolerant consensus to low-power wireless communication and introduce Wireless Paxos, a flavor of the Paxos algorithm specifically tailored to low-power IoT. We then present STARC, a wireless coordination mechanism for intersection management combining commit semantics with synchronous transmissions. To enable adaptivity in the wireless networking stack, we introduce Dimmer and eAFH. Dimmer combines Reinforcement Learning and Multi-Armed Bandits to adapt its communication parameters and counteract the adverse effects of wireless interference at runtime while optimizing energy consumption in normal conditions. eAFH provides dynamic channel management in Bluetooth Low Energy by excluding and dynamically re-including channels in scenarios with mobility. Finally, we demonstrate with BlueSeer that a device can classify its environment, i.e., recognize whether it is located in a home, office, street, or transport, solely from received Bluetooth Low Energy signals fed into an embedded machine learning model. BlueSeer therefore increases the intelligence of the smallest IoT devices, allowing them to adapt their behaviors to their current surroundings

    Wireless Communication Technologies for Safe Cooperative Cyber Physical Systems

    Get PDF
    Cooperative Cyber-Physical Systems (Co-CPSs) can be enabled using wireless communication technologies, which in principle should address reliability and safety challenges. Safety for Co-CPS enabled by wireless communication technologies is a crucial aspect and requires new dedicated design approaches. In this paper, we provide an overview of five Co-CPS use cases, as introduced in our SafeCOP EU project, and analyze their safety design requirements. Next, we provide a comprehensive analysis of the main existing wireless communication technologies giving details about the protocols developed within particular standardization bodies. We also investigate to what extent they address the non-functional requirements in terms of safety, security and real time, in the different application domains of each use case. Finally, we discuss general recommendations about the use of different wireless communication technologies showing their potentials in the selected real-world use cases. The discussion is provided under consideration in the 5G standardization process within 3GPP, whose current efforts are inline to current gaps in wireless communications protocols for Co-CPSs including many future use casesinfo:eu-repo/semantics/publishedVersio

    Towards reliable communication in low-power wireless body area networks

    Get PDF
    Es wird zunehmend die Ansicht vertreten, dass tragbare Computer und Sensoren neue Anwendungen in den Bereichen Gesundheitswesen, personalisierte Fitness oder erweiterte Realität ermöglichen werden. Die am Körper getragenen Geräte sind dabei mithilfe eines Wireless Body Area Network (WBAN) verbunden, d.h. es wird drahtlose Kommunikation statt eines drahtgebundenen Kanals eingesetzt. Der drahtlose Kanal ist jedoch typischerweise ein eher instabiles Kommunikationsmedium und die Einsatzbedingungen von WBANs sind besonders schwierig: Einerseits wird die Kanalqualität stark von den physischen Bewegungen der Person beeinflusst, andererseits werden WBANs häufig in lizenzfreien Funkbändern eingesetzt und sind daher Störungen von anderen drahtlosen Geräten ausgesetzt. Oft benötigen WBAN Anwendungen aber eine zuverlässige Datenübertragung. Das erste Ziel dieser Arbeit ist es, ein besseres Verständnis dafür zu schaffen, wie sich die spezifischen Einsatzbedingungen von WBANs auf die intra-WBAN Kommunikation auswirken. So wird zum Beispiel analysiert, welchen Einfluss die Platzierung der Geräte auf der Oberfläche des menschlichen Körpers und die Mobilität des Benutzers haben. Es wird nachgewiesen, dass während regelmäßiger Aktivitäten wie Laufen die empfangene Signalstärke stark schwankt, gleichzeitig aber Signalstärke-Spitzen oft einem regulären Muster folgen. Außerdem wird gezeigt, dass in urbanen Umgebungen die Effekte von 2.4 GHz Radio Frequency (RF) Interferenz im Vergleich zu den Auswirkungen von fading (Schwankungen der empfangenen Signalstärke) eher gering sind. Allerdings führt RF Interferenz dazu, dass häufiger Bündelfehler auftreten, d.h. Fehler zeitlich korrelieren. Dies kann insbesondere in Anwendungen, die eine geringe Übertragungslatenz benötigen, problematisch sein. Der zweite Teil dieser Arbeit beschäftigt sich mit der Analyse von Verfahren, die potentiell die Zuverlässigkeit der Kommunikation in WBANs erhöhen, ohne dass wesentlich mehr Energie verbraucht wird. Zunächst wird der Trade-off zwischen Übertragungslatenz und der Zuverlässigkeit der Kommunikation analysiert. Diese Analyse basiert auf einem neuen Paket-Scheduling Algorithmus, der einen Beschleunigungssensor nutzt, um die WBAN Kommunikation auf die physischen Bewegungen der Person abzustimmen. Die Analyse zeigt, dass unzuverlässige Kommunikationsverbindungen oft zuverlässig werden, wenn Pakete während vorhergesagter Signalstärke-Spitzen gesendet werden. Ferner wird analysiert, inwiefern die Robustheit gegen 2.4 GHz RF Interferenz verbessert werden kann. Dazu werden zwei Verfahren betrachtet: Ein bereits existierendes Verfahren, das periodisch einen Wechsel der Übertragungsfrequenz durchführt (channel hopping) und ein neues Verfahren, das durch RF Interferenz entstandene Bitfehler reparieren kann, indem der Inhalt mehrerer fehlerhafter Pakete kombiniert wird (packet combining). Eine Schlussfolgerung ist, dass Frequenzdiversität zwar das Auftreten von Bündelfehlern reduzieren kann, dass jedoch die statische Auswahl eines Kanals am oberen Ende des 2.4 GHz Bandes häufig schon eine akzeptable Abhilfe gegen RF Interferenz darstellt.There is a growing belief that wearable computers and sensors will enable new applications in areas such as healthcare, personal fitness or augmented reality. The devices are attached to a person and connected through a Wireless Body Area Network (WBAN), which replaces the wires of traditional monitoring systems by wireless communication. This comes, however, at the cost of turning a reliable communication channel into an unreliable one. The wireless channel is typically a rather unstable medium for communication and the conditions under which WBANs have to operate are particularly harsh: not only is the channel strongly influenced by the movements of the person, but WBANs also often operate in unlicensed frequency bands and may therefore be exposed to a significant amount of interference from other wireless devices. Yet, many envisioned WBAN applications require reliable data transmission. The goals of this thesis are twofold: first, we aim at establishing a better understanding of how the specific WBAN operating conditions, such as node placement on the human body surface and user mobility, impact intra-WBAN communication. We show that during periodic activities like walking the received signal strength on an on-body communication link fluctuates strongly, but signal strength peaks often follow a regular pattern. Furthermore, we find that in comparison to the effects of fading 2.4 GHz Radio Frequency (RF) interference causes relatively little packet loss - however, urban 2.4 GHz RF noise is bursty (correlated in time), which may be problematic for applications with low latency bounds. The second goal of this thesis is to analyze how communication reliability in WBANs can be improved without sacrificing a significant amount of additional energy. To this end, we first explore the trade-off between communication latency and communication reliability. This analysis is based on a novel packet scheduling algorithm, which makes use of an accelerometer to couple WBAN communication with the movement patterns of the user. The analysis shows that unreliable links can often be made reliable if packets are transmitted at predicted signal strength peaks. In addition, we analyze to what extent two mechanisms can improve robustness against 2.4 GHz RF interference when adopted in a WBAN context: we analyze the benefits of channel hopping, and we examine how the packet retransmission process can be made more efficient by using a novel packet combining algorithm that allows to repair packets corrupted by RF interference. One of the conclusions is that while frequency agility may decrease "burstiness" of errors the static selection of a channel at the upper end of the 2.4 GHz band often already represents a good remedy against RF interference

    Ultra-low power IoT applications: from transducers to wireless protocols

    Get PDF
    This dissertation aims to explore Internet of Things (IoT) sensor nodes in various application scenarios with different design requirements. The research provides a comprehensive exploration of all the IoT layers composing an advanced device, from transducers to on-board processing, through low power hardware schemes and wireless protocols for wide area networks. Nowadays, spreading and massive utilization of wireless sensor nodes pushes research and industries to overcome the main limitations of such constrained devices, aiming to make them easily deployable at a lower cost. Significant challenges involve the battery lifetime that directly affects the device operativity and the wireless communication bandwidth. Factors that commonly contrast the system scalability and the energy per bit, as well as the maximum coverage. This thesis aims to serve as a reference and guideline document for future IoT projects, where results are structured following a conventional development pipeline. They usually consider communication standards and sensing as project requirements and low power operation as a necessity. A detailed overview of five leading IoT wireless protocols, together with custom solutions to overcome the throughput limitations and decrease the power consumption, are some of the topic discussed. Low power hardware engineering in multiple applications is also introduced, especially focusing on improving the trade-off between energy, functionality, and on-board processing capabilities. To enhance these features and to provide a bottom-top overview of an IoT sensor node, an innovative and low-cost transducer for structural health monitoring is presented. Lastly, the high-performance computing at the extreme edge of the IoT framework is addressed, with special attention to image processing algorithms running on state of the art RISC-V architecture. As a specific deployment scenario, an OpenCV-based stack, together with a convolutional neural network, is assessed on the octa-core PULP SoC

    Kommunikation und Bildverarbeitung in der Automation

    Get PDF
    In diesem Open-Access-Tagungsband sind die besten Beiträge des 9. Jahreskolloquiums "Kommunikation in der Automation" (KommA 2018) und des 6. Jahreskolloquiums "Bildverarbeitung in der Automation" (BVAu 2018) enthalten. Die Kolloquien fanden am 20. und 21. November 2018 in der SmartFactoryOWL, einer gemeinsamen Einrichtung des Fraunhofer IOSB-INA und der Technischen Hochschule Ostwestfalen-Lippe statt. Die vorgestellten neuesten Forschungsergebnisse auf den Gebieten der industriellen Kommunikationstechnik und Bildverarbeitung erweitern den aktuellen Stand der Forschung und Technik. Die in den Beiträgen enthaltenen anschaulichen Beispiele aus dem Bereich der Automation setzen die Ergebnisse in den direkten Anwendungsbezug
    corecore