32,707 research outputs found

    Channel Sounding for the Masses: Low Complexity GNU 802.11b Channel Impulse Response Estimation

    Full text link
    New techniques in cross-layer wireless networks are building demand for ubiquitous channel sounding, that is, the capability to measure channel impulse response (CIR) with any standard wireless network and node. Towards that goal, we present a software-defined IEEE 802.11b receiver and CIR estimation system with little additional computational complexity compared to 802.11b reception alone. The system implementation, using the universal software radio peripheral (USRP) and GNU Radio, is described and compared to previous work. By overcoming computational limitations and performing direct-sequence spread-spectrum (DS-SS) matched filtering on the USRP, we enable high-quality yet inexpensive CIR estimation. We validate the channel sounder and present a drive test campaign which measures hundreds of channels between WiFi access points and an in-vehicle receiver in urban and suburban areas

    Crowd Counting Through Walls Using WiFi

    Full text link
    Counting the number of people inside a building, from outside and without entering the building, is crucial for many applications. In this paper, we are interested in counting the total number of people walking inside a building (or in general behind walls), using readily-deployable WiFi transceivers that are installed outside the building, and only based on WiFi RSSI measurements. The key observation of the paper is that the inter-event times, corresponding to the dip events of the received signal, are fairly robust to the attenuation through walls (for instance as compared to the exact dip values). We then propose a methodology that can extract the total number of people from the inter-event times. More specifically, we first show how to characterize the wireless received power measurements as a superposition of renewal-type processes. By borrowing theories from the renewal-process literature, we then show how the probability mass function of the inter-event times carries vital information on the number of people. We validate our framework with 44 experiments in five different areas on our campus (3 classrooms, a conference room, and a hallway), using only one WiFi transmitter and receiver installed outside of the building, and for up to and including 20 people. Our experiments further include areas with different wall materials, such as concrete, plaster, and wood, to validate the robustness of the proposed approach. Overall, our results show that our approach can estimate the total number of people behind the walls with a high accuracy while minimizing the need for prior calibrations.Comment: 10 pages, 14 figure

    Map-Aware Models for Indoor Wireless Localization Systems: An Experimental Study

    Full text link
    The accuracy of indoor wireless localization systems can be substantially enhanced by map-awareness, i.e., by the knowledge of the map of the environment in which localization signals are acquired. In fact, this knowledge can be exploited to cancel out, at least to some extent, the signal degradation due to propagation through physical obstructions, i.e., to the so called non-line-of-sight bias. This result can be achieved by developing novel localization techniques that rely on proper map-aware statistical modelling of the measurements they process. In this manuscript a unified statistical model for the measurements acquired in map-aware localization systems based on time-of-arrival and received signal strength techniques is developed and its experimental validation is illustrated. Finally, the accuracy of the proposed map-aware model is assessed and compared with that offered by its map-unaware counterparts. Our numerical results show that, when the quality of acquired measurements is poor, map-aware modelling can enhance localization accuracy by up to 110% in certain scenarios.Comment: 13 pages, 11 figures, 1 table. IEEE Transactions on Wireless Communications, 201

    People-Sensing Spatial Characteristics of RF Sensor Networks

    Full text link
    An "RF sensor" network can monitor RSS values on links in the network and perform device-free localization, i.e., locating a person or object moving in the area in which the network is deployed. This paper provides a statistical model for the RSS variance as a function of the person's position w.r.t. the transmitter (TX) and receiver (RX). We show that the ensemble mean of the RSS variance has an approximately linear relationship with the expected total affected power (ETAP). We then use analysis to derive approximate expressions for the ETAP as a function of the person's position, for both scattering and reflection. Counterintuitively, we show that reflection, not scattering, causes the RSS variance contours to be shaped like Cassini ovals. Experimental tests reported here and in past literature are shown to validate the analysis
    • …
    corecore