2,832 research outputs found

    An intuitive control space for material appearance

    Get PDF
    Many different techniques for measuring material appearance have been proposed in the last few years. These have produced large public datasets, which have been used for accurate, data-driven appearance modeling. However, although these datasets have allowed us to reach an unprecedented level of realism in visual appearance, editing the captured data remains a challenge. In this paper, we present an intuitive control space for predictable editing of captured BRDF data, which allows for artistic creation of plausible novel material appearances, bypassing the difficulty of acquiring novel samples. We first synthesize novel materials, extending the existing MERL dataset up to 400 mathematically valid BRDFs. We then design a large-scale experiment, gathering 56,000 subjective ratings on the high-level perceptual attributes that best describe our extended dataset of materials. Using these ratings, we build and train networks of radial basis functions to act as functionals mapping the perceptual attributes to an underlying PCA-based representation of BRDFs. We show that our functionals are excellent predictors of the perceived attributes of appearance. Our control space enables many applications, including intuitive material editing of a wide range of visual properties, guidance for gamut mapping, analysis of the correlation between perceptual attributes, or novel appearance similarity metrics. Moreover, our methodology can be used to derive functionals applicable to classic analytic BRDF representations. We release our code and dataset publicly, in order to support and encourage further research in this direction

    Experimentally-Derived Phase Function Approximations in Support of the Orbital Debris Program Office

    Get PDF
    The NASA Orbital Debris Program Office (ODPO) has used various optical assets to acquire photometric data of Earth-orbiting objects to define the orbital debris environment. To better characterize and model optical data acquired from ground-based telescopes, the Optical Measurements Center (OMC) at NASA Johnson Space Center emulates illumination conditions seen in space by using equipment and techniques that parallel telescopic observations and source-target-sensor orientations. One of the OMC goals is to improve the size calculation used for optical data by developing an optical-based Size Estimation Model. The current size estimation requires applying a Lambertian phase function, a set albedo value, and range to the observed magnitude. The first step to improving the sampled brightness of laboratory targets is to remove aspect-angle dependencies. Then, the volume of possible object viewing angles is sampled at 21 combinations of azimuth and elevation angles for each solar phase angle. Finally, the acquired images are input into an image processing program that generates approximations for the objects Bidirectional Reflectance Distribution Function (BRDF) and phase function. The BRDF is a radiometric concept that identifies an objects material composition by matching a BRDF approximated with photometric data collected by ground-based telescopes with a BRDF generated experimentally from a known object in the laboratory. This paper presents the initial BRDF and phase function approximations for various fragments/targets acquired in the OMC and how the findings will be incorporated into ODPO models. A Lambertian sphere is used as a baseline for initial size estimation calculations and phase function comparisons. Spacecraft materials and fragments from hypervelocity laboratory impact tests are also presented to compare against the current assumed Lambertian phase function used for size estimates. This paper presents the preliminary phase function analysis and plan forward to utilize a laboratory-based phase function to improve the current optical size estimates using BRDF measurements for a large volume of targets composed of various shapes, sizes, and materials

    An Approach to Retrieve BRDF from Satellite and Airborne Measurements of Surface-Reflected Radiance Based on Decoupling of Atmospheric Radiative Transfer and Surface Reflection

    Get PDF
    Bi-directional Reflection Distribution Function (BRDF) defines anisotropy of the surface reflection. It is required to specify the boundary condition for radiative transfer (RT) modeling. Measurements of reflected radiance by satellite- and air-borne sensors provide information about anisotropy of surface reflection. Atmospheric correction needs to be performed to derive BRDF from the reflected radiance. Common approach for BRDF retrievals consists of the use of kernel-based BRDF and RT modeling that needs to be done anew at every step of the iterative process. The kernels weights are obtained by minimization of the difference between measured and modeled radiance. This study develops a new method of retrieving kernel-based BRDF that requires RT calculations to be done only once. The method employs the exact analytical expression of radiance at any atmospheric level through the solutions of two auxiliary atmosphere-only RT problems and the surface-reflected radiance at the surface level. The latter is related to BRDF and solutions of the auxiliary RT problems by a Fredholm integral equation of the second kind. The approach requires to perform RT calculations one time before the iterations. It can use observations taken at different atmospheric conditions assuming that surface conditions remain unchanged during the time span of observations. The algorithm accurately catches zero weights of the kernels that may be a concern if the number of kernels is greater than 3 in current mainstream approaches. The study presents numerical tests of the BRDF retrieval algorithm for various surface and atmospheric conditions
    corecore