22,894 research outputs found

    Genuine lab experiences for students in resource constrained environments: The RealLab with integrated intelligent assessment.

    Get PDF
    Laboratory activities are indispensable for developing engineering skills. Computer Aided Learning (CAL) tools can be used to enhance laboratory learning in various ways, the latest approach being the virtual laboratory technique that emulates traditional laboratory processes. This new approach makes it possible to give students complete and genuine laboratory experiences in situations constrained by limited resources in the provision of laboratory facilities and infrastructure and/or where there is need for laboratory education, for large classes, with only one laboratory stand. This may especially be the case in countries in transition. Most existing virtual laboratories are not available for purchase. Where they are, they may not be cost friendly for resource constrained environments. Also, most do not integrate any form of assessment structure. In this paper, we present a very cost friendly virtual laboratory solution for genuine laboratory experiences in resource constrained environments, with integrated intelligent assessment

    Development of VR/AR applications for experimental tests of beams, columns, and frames

    Get PDF
    This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29CP.1943-5487.0000908.This paper depicts a set of virtual reality (VR) and augmented reality (AR) applications conceived for the enrichment of laboratory experiences within the field of structural engineering. The experimental program corresponds to the study of beams, columns, and frames of austenitic stainless steel subjected to different types of static loading. The development of these applications encompasses the use of measured data from sensors, the use of 3D modeling tools, the use of game engines, and the corresponding mathematical treatment and postprocess of the structural tests in a real-time fashion. The developed applications provide new possibilities for structural engineering laboratory experiences. In both cases (VR and AR), the developed applications are meant to enhance the experimental program experience to a variety of target users (researchers, technicians, students) by adding customized information related to the structural behavior of all elements during the tests as well as to basic concepts of health and safety in structural engineering laboratories.This experimental program was developed in the frame of Project BIA2016-75678-R, AEI/FEDER, UE “Comportamiento estructural de pórticos de acero inoxidable. Seguridad frente a acciones accidentales de sismo y fuego,” funded by the MINECO (Spain). Financial support from the Industrial Doctorate program (Ref. ID.:2017-DI-069) of AGAUR, Government of Catalonia, is acknowledged by the third author.Peer ReviewedPostprint (author's final draft

    Generalized Method Of Designing Unmanned Remotely Operated Complexes Based On The System Approach

    Get PDF
    Self-propelled underwater systems belong to the effective means of marine robotics. The advantages of their use include the ability to perform underwater work in real time with high quality and without risk to the life of a human operator. At present, the design of such complexes is not formalized and is carried out separately for each of the components – a remotely operated vehicle, a tether-cable and cable winch, a cargo device and a control and energy device. As a result, the time spent on design increases and its quality decreases. The system approach to the design of remotely operated complexes ensures that the features of the interaction of the components of the complex are taken into account when performing its main operating modes. In this paper, the system interaction between the components of the complex is proposed to take into account in the form of decomposition of “underwater tasks (mission) – underwater technology of its implementation – underwater work on the selected technology – task for the executive mechanism of the complex” operations. With this approach, an information base is formed for the formation of a list of mechanisms of the complex, the technical appearance of its components is being formed, which is important for the early design stages. Operative, creative and engineering phases of the design of the complex are proposed. For each phase, a set of works has been formulated that cover all the components of the complex and use the author's existence equations for these components as a tool for system analysis of technical solutions.The perspective of the scientific task of the creative phase to create accurate information models of the functioning of the components of the complex and models to support the adoption of design decisions based on a systematic approach is shown.The obtained results form the theoretical basis for finding effective technical solutions in the early stages of designing remotely operated complexes and for automating the design with the assistance of modern applied computer research and design packages

    Modelling and simulation framework for reactive transport of organic contaminants in bed-sediments using a pure java object - oriented paradigm

    Get PDF
    Numerical modelling and simulation of organic contaminant reactive transport in the environment is being increasingly relied upon for a wide range of tasks associated with risk-based decision-making, such as prediction of contaminant profiles, optimisation of remediation methods, and monitoring of changes resulting from an implemented remediation scheme. The lack of integration of multiple mechanistic models to a single modelling framework, however, has prevented the field of reactive transport modelling in bed-sediments from developing a cohesive understanding of contaminant fate and behaviour in the aquatic sediment environment. This paper will investigate the problems involved in the model integration process, discuss modelling and software development approaches, and present preliminary results from use of CORETRANS, a predictive modelling framework that simulates 1-dimensional organic contaminant reaction and transport in bed-sediments

    Development of IoT applications in civil engineering classrooms using mobile devices

    Get PDF
    This is the peer reviewed version of the following article: [Chacón R, Posada H, Toledo Á, Gouveia M. Development of IoT applications in civil engineering classrooms using mobile devices. Comput Appl Eng Educ. 2018;26:1769–1781. https://doi.org/10.1002/cae.21985], which has been published in final form at https://doi.org/10.1002/cae.21985. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-ArchivingThis paper presents academic efforts aimed at integrating methodologies associated with the use of mobile devices, the potential of the Internet of Things (IoT), and the role of experimental education in civil engineering. This integration is developed by encompassing the use of sensors, microcontrollers, civil engineering problems, app development, and fabrication. The proposal provides an explorative way of approaching the numerous possibilities that arise in civil engineering when it comes to IoT, automation, monitoring, and control of civil engineering processes. The used tools represent accessible and affordable ways for application in classrooms and in educational laboratories for beginners. The initial explorative approach implies the fusion of three realms: (i) the phenomenology and mathematics of varied civil engineering problems; (ii) the systematic use of digital fabrication technologies and electronic prototyping platforms; and (iii) the creative and visual way of developing codes provided by block-based development platforms. This integration of perspectives is an attempt of approaching civil engineering mathematics to technology and arts with a rigorous scientific approach. A set of different examples is presented with the corresponding findings in educational terms. These examples are developed in a constructive, scaffolding-based way and may contribute as a potential alternative in the development of open-source teaching labs in civil engineering schools.Peer ReviewedPostprint (author's final draft
    • 

    corecore