3,110 research outputs found

    Planar Refrains

    Get PDF
    My practice explores phenomenal poetic truths that exist in fissures between the sensual and physical qualities of material constructs. Magnifying this confounding interspace, my work activates specific instruments within mutable, relational systems of installation, movement, and documentation. The tools I fabricate function within variable orientations and are implemented as both physical barriers and thresholds into alternate, virtual domains. Intersecting fragments of sound and moving image build a nexus of superimposed spatialities, while material constructions are enveloped in ephemeral intensities. Within this compounded environment, both mind and body are charged as active sites through which durational, contemplative experiences can pass. Reverberation, the ghostly refrain of a sound calling back to our ears from a distant plane, can intensify our emotional experience of place. My project Planar Refrains utilizes four electro-mechanical reverb plates, analog audio filters designed to simulate expansive acoustic arenas. Historically these devices have provided emotive voicings to popular studio recordings, dislocating the performer from the commercial studio and into a simulated reverberant territory of mythic proportions. The material resonance of steel is used to filter a recorded signal, shaping the sound of a human performance into something more transformative, a sound embodying otherworldly dynamics. In subverting the designed utility of reverb plates, I am exploring their value as active surfaces extending across different spatial realities. The background of ephemeral sonic residue is collapsed into the foreground, a filter becomes sculpture, and this sculpture becomes an instrument in an evolving soundscape

    Experiential canalization of behavioral development: Results.

    Get PDF

    Experiencing Cinematic VR: Where Theory and Practice Converge in the Tribeca Film Festival Cinema360

    Get PDF
    Cinematic virtual reality (VR) production has reached enough capacity to support a festival. This paper offers a theoretical framework of VR narrative structure to critically examine one such festival in cinematic VR. The spotlight here is on the fifteen entries in the 2020 Tribeca Film Festival Cinema360. Findings suggest that although the field of cinematic VR has advanced substantially in recent years in terms of narrative design and user experience, there is still a considerable distance for VR storytellers to travel to fully utilize the nature and potential of the developing medium of virtual reality

    Probing the pressure dependence of sound speed and attenuation in bubbly media: Experimental observations, a theoretical model and numerical calculations

    Full text link
    The problem of attenuation and sound speed of bubbly media has remained partially unsolved. Comprehensive data regarding pressure-dependent changes of the attenuation and sound speed of a bubbly medium are not available. Our theoretical understanding of the problem is limited to linear or semi-linear theoretical models, which are not accurate in the regime of large amplitude bubble oscillations. Here, by controlling the size of the lipid coated bubbles (mean diameter of ~5.4um), we report the first time observation and characterization of the simultaneous pressure dependence of sound speed and attenuation in bubbly water below, at and above MBs resonance (frequency range between 1-3MHz). With increasing acoustic pressure (between 12.5-100kPa), the frequency of the attenuation and sound speed peaks decreases while maximum and minimum amplitudes of the sound speed increase. We propose a nonlinear model for the estimation of the pressure dependent sound speed and attenuation with good agreement with the experiments. The model calculations are validated by comparing with the linear and semi-linear models predictions. One of the major challenges of the previously developed models is the significant overestimation of the attenuation at the bubble resonance at higher void fractions (e.g. 0.005). We addressed this problem by incorporating bubble-bubble interactions and comparing the results to experiments. Influence of the bubble-bubble interactions increases with increasing pressure. Within the examined exposure parameters, we numerically show that, even for low void fractions (e.g. 5.1*10-6) with increasing pressure the sound speed may become 4 times higher than the sound speed in the non-bubbly medium.Comment: arXiv admin note: text overlap with arXiv:1811.0778

    Case Studies in the Absorption of Low Frequency Sound in Music Rooms

    Get PDF
    Room design for music is a special and highly valued skill. The spectrum, timbre and dynamics of music, coupled with our keen sense for musical sounds make these rooms a particular challenge for the acoustician. The goal is to create an acoustic environment whereby the sound field within the space supports the instruments and enhances their tone, with unfavourable colourations and effects minimised. Room dimensions, construction materials and specialised treatments must be chosen carefully to achieve the perfect musical balance for the performance. Architectural Acoustics is the field which brings together art and science to address the challenge of creating an environment suitable for music. The most challenging aspect is to achieve the required spectral balance, particularly at low frequency. This thesis presents a literature review of current knowledge of architectural acoustics for music and traditional acoustics treatments. This is followed by three case studies which each investigate a novel solution to improve the acoustic environment for musicians. The first case study investigated room boundaries as potential absorbers. The study arose at a music college who wanted an evaluation of a beautiful new recital hall. Professional musicians had expressed concern about the unusual acoustic in the hall. A room acoustic assessment is described, and results analysed and compared to standards and guidance. Multiple studies including modal analysis, physical experiments and wave-based computer simulation were undertaken to investigate the mechanism for the low frequency dip in the room response. It was determined that the false walls in the hall were acting as quarter wavelength resonators but for multiple low frequencies thus creating an effective absorber. This absorber design could be repurposed to reduce the boom commonly found in modern music venues. The second case study explored pneumatic absorbers. This investigation arose when a London orchestral rehearsal space wanted an inexpensive, quick to deploy, flexible acoustic which would reduce the low frequency boom in the space thereby balancing the room response. A variety of airbeds were selected for the study and tested in the laboratory with different levels of inflation. Finally, the position and number of the airbeds was investigated for optimisation purposes. The airbeds were installed in Henry Wood Hall and the room response measured. It was found the room response was flattened thus improving the acoustic quality. Conductors from world leading orchestras responded positively to the new condition of the hall. The third case study focused on the Targeted Energy Transfer method as a means of creating a novel low frequency absorber. This approach transferred knowledge from the field of vibration control to architectural acoustics. A test rig was built to measure the vibrational damping in two types of hyperelastic latex materials using a laser vibrometer. A small low frequency non-linear response was found but there was not enough evidence to pursue the research further

    Combining quantitative narrative analysis and predictive modeling - an eye tracking study

    Get PDF
    As a part of a larger interdisciplinary project on Shakespeare sonnets’ reception (Jacobs et al., 2017; Xue et al., 2017), the present study analyzed the eye movement behavior of participants reading three of the 154 sonnets as a function of seven lexical features extracted via Quantitative Narrative Analysis (QNA). Using a machine learning- based predictive modeling approach five ‘surface’ features (word length, orthographic neighborhood density, word frequency, orthographic dissimilarity and sonority score) were detected as important predictors of total reading time and fixation probability in poetry reading. The fact that one phonological feature, i.e., sonority score, also played a role is in line with current theorizing on poetry reading. Our approach opens new ways for future eye movement research on reading poetic texts and other complex literary materials (cf. Jacobs, 2015c)

    \u3cem\u3eWork\u3c/em\u3e 2006/2007

    Get PDF
    WORK is an annual publication of the Department of Architecture that documents student work in design studios and courses in the Master of Architecture and Post-Professional programs, as well as events, faculty news and student awards. It also includes abstracts of PhD dissertations defended that year. It provides an opportunity to explore the creative work of our students and is a permanent record of work in the Department

    Music listening as coping behavior : from reactive response to sense-making

    Get PDF
    Coping is a survival mechanism of living organisms. It is not merely reactive, but also involves making sense of the environment by rendering sensory information into percepts that have meaning in the context of an organism's cognitions. Music listening, on the other hand, is a complex task that embraces sensory, physiological, behavioral, and cognitive levels of processing. Being both a dispositional process that relies on our evolutionary toolkit for coping with the world and a more elaborated skill for sense-making, it goes beyond primitive action-reaction couplings by the introduction of higher-order intermediary variables between sensory input and effector reactions. Consideration of music-listening from the perspective of coping treats music as a sound environment and listening as a process that involves exploration of this environment as well as interactions with the sounds. Several issues are considered in this regard such as the conception of music as a possible stressor, the role of adaptive listening, the relation between coping and reward, the importance of self-regulation strategies in the selection of music, and the instrumental meaning of music in the sense that it can be used to modify the internal and external environment of the listener
    • …
    corecore