22,554 research outputs found

    The seamless integration of Web3D technologies with university curricula to engage the changing student cohort

    Get PDF
    The increasing tendency of many university students to study at least some courses at a distance limits their opportunities for the interactions fundamental to learning. Online learning can assist but relies heavily on text, which is limiting for some students. The popularity of computer games, especially among the younger students, and the emergence of networked games and game-like virtual worlds offers opportunities for enhanced interaction in educational applications. For virtual worlds to be widely adopted in higher education it is desirable to have approaches to design and development that are responsive to needs and limited in their resource requirements. Ideally it should be possible for academics without technical expertise to adapt virtual worlds to support their teaching needs. This project identified Web3D, a technology that is based on the X3D standards and which presents 3D virtual worlds within common web browsers, as an approach worth exploring for educational application. The broad goals of the project were to produce exemplars of Web3D for educational use, together with development tools and associated resources to support non-technical academic adopters, and to promote an Australian community of practice to support broader adoption of Web3D in education. During the first year of the project exemplar applications were developed and tested. The Web3D technology was found to be still in a relatively early stage of development in which the application of standards did not ensure reliable operation in different environments. Moreover, ab initio development of virtual worlds and associated tools proved to be more demanding of resources than anticipated and was judged unlikely in the near future to result in systems that non-technical academics could use with confidence. In the second year the emphasis moved to assisting academics to plan and implement teaching in existing virtual worlds that provided relatively easy to use tools for customizing an environment. A project officer worked with participating academics to support the teaching of significant elements of courses within Second LifeTM. This approach was more successful in producing examples of good practice that could be shared with and emulated by other academics. Trials were also conducted with ExitRealityTM, a new Australian technology that presents virtual worlds in a web browser. Critical factors in the success of the project included providing secure access to networked computers with the necessary capability; negotiating the complexity of working across education, design of virtual worlds, and technical requirements; and supporting participants with professional development in the technology and appropriate pedagogy for the new environments. Major challenges encountered included working with experimental technologies that are evolving rapidly and deploying new networked applications on secure university networks. The project has prepared the way for future expansion in the use of virtual worlds for teaching at USQ and has contributed to the emergence of a national network of tertiary educators interested in the educational applications of virtual worlds

    Emerging technologies for learning report (volume 3)

    Get PDF

    SOCR: Statistics Online Computational Resource

    Get PDF
    The need for hands-on computer laboratory experience in undergraduate and graduate statistics education has been firmly established in the past decade. As a result a number of attempts have been undertaken to develop novel approaches for problem-driven statistical thinking, data analysis and result interpretation. In this paper we describe an integrated educational web-based framework for: interactive distribution modeling, virtual online probability experimentation, statistical data analysis, visualization and integration. Following years of experience in statistical teaching at all college levels using established licensed statistical software packages, like STATA, S-PLUS, R, SPSS, SAS, Systat, etc., we have attempted to engineer a new statistics education environment, the Statistics Online Computational Resource (SOCR). This resource performs many of the standard types of statistical analysis, much like other classical tools. In addition, it is designed in a plug-in object-oriented architecture and is completely platform independent, web-based, interactive, extensible and secure. Over the past 4 years we have tested, fine-tuned and reanalyzed the SOCR framework in many of our undergraduate and graduate probability and statistics courses and have evidence that SOCR resources build student's intuition and enhance their learning.

    Report from GI-Dagstuhl Seminar 16394: Software Performance Engineering in the DevOps World

    Get PDF
    This report documents the program and the outcomes of GI-Dagstuhl Seminar 16394 "Software Performance Engineering in the DevOps World". The seminar addressed the problem of performance-aware DevOps. Both, DevOps and performance engineering have been growing trends over the past one to two years, in no small part due to the rise in importance of identifying performance anomalies in the operations (Ops) of cloud and big data systems and feeding these back to the development (Dev). However, so far, the research community has treated software engineering, performance engineering, and cloud computing mostly as individual research areas. We aimed to identify cross-community collaboration, and to set the path for long-lasting collaborations towards performance-aware DevOps. The main goal of the seminar was to bring together young researchers (PhD students in a later stage of their PhD, as well as PostDocs or Junior Professors) in the areas of (i) software engineering, (ii) performance engineering, and (iii) cloud computing and big data to present their current research projects, to exchange experience and expertise, to discuss research challenges, and to develop ideas for future collaborations

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    Bipartite electronic SLA as a business framework to support cross-organization load management of real-time online applications

    No full text
    Online applications such as games and e-learning applications fall within the broader category of real-time online interactive applications (ROIA), a new class of ‘killer’ application for the Grid that is being investigated in the edutain@grid project. The two case studies in edutain@grid are an online game and an e-learning training application. We present a novel Grid-based business framework that makes use of bipartite service level agreements (SLAs) and dynamic invoice models to model complex business relationships in a massively scalable and flexible way. We support cross-organization load management at the business level, through zone migration. For evaluation we look at existing and extended value chains, the quality of service (QoS) metrics measured and the dynamic invoice models that support this work. We examine the causal links from customer quality of experience (QoE) and service provider quality of business (QoBiz) through to measured quality of service. Finally we discuss a shared reward business ecosystem and suggest how extended service level agreements and invoice models can support this

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings
    corecore