33 research outputs found

    Survey and Analysis of Production Distributed Computing Infrastructures

    Full text link
    This report has two objectives. First, we describe a set of the production distributed infrastructures currently available, so that the reader has a basic understanding of them. This includes explaining why each infrastructure was created and made available and how it has succeeded and failed. The set is not complete, but we believe it is representative. Second, we describe the infrastructures in terms of their use, which is a combination of how they were designed to be used and how users have found ways to use them. Applications are often designed and created with specific infrastructures in mind, with both an appreciation of the existing capabilities provided by those infrastructures and an anticipation of their future capabilities. Here, the infrastructures we discuss were often designed and created with specific applications in mind, or at least specific types of applications. The reader should understand how the interplay between the infrastructure providers and the users leads to such usages, which we call usage modalities. These usage modalities are really abstractions that exist between the infrastructures and the applications; they influence the infrastructures by representing the applications, and they influence the ap- plications by representing the infrastructures

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    Contribution à la convergence d'infrastructure entre le calcul haute performance et le traitement de données à large échelle

    Get PDF
    The amount of produced data, either in the scientific community or the commercialworld, is constantly growing. The field of Big Data has emerged to handle largeamounts of data on distributed computing infrastructures. High-Performance Computing (HPC) infrastructures are traditionally used for the execution of computeintensive workloads. However, the HPC community is also facing an increasingneed to process large amounts of data derived from high definition sensors andlarge physics apparati. The convergence of the two fields -HPC and Big Data- iscurrently taking place. In fact, the HPC community already uses Big Data tools,which are not always integrated correctly, especially at the level of the file systemand the Resource and Job Management System (RJMS).In order to understand how we can leverage HPC clusters for Big Data usage, andwhat are the challenges for the HPC infrastructures, we have studied multipleaspects of the convergence: We initially provide a survey on the software provisioning methods, with a focus on data-intensive applications. We contribute a newRJMS collaboration technique called BeBiDa which is based on 50 lines of codewhereas similar solutions use at least 1000 times more. We evaluate this mechanism on real conditions and in simulated environment with our simulator Batsim.Furthermore, we provide extensions to Batsim to support I/O, and showcase thedevelopments of a generic file system model along with a Big Data applicationmodel. This allows us to complement BeBiDa real conditions experiments withsimulations while enabling us to study file system dimensioning and trade-offs.All the experiments and analysis of this work have been done with reproducibilityin mind. Based on this experience, we propose to integrate the developmentworkflow and data analysis in the reproducibility mindset, and give feedback onour experiences with a list of best practices.RĂ©sumĂ©La quantitĂ© de donnĂ©es produites, que ce soit dans la communautĂ© scientifiqueou commerciale, est en croissance constante. Le domaine du Big Data a Ă©mergĂ©face au traitement de grandes quantitĂ©s de donnĂ©es sur les infrastructures informatiques distribuĂ©es. Les infrastructures de calcul haute performance (HPC) sont traditionnellement utilisĂ©es pour l’exĂ©cution de charges de travail intensives en calcul. Cependant, la communautĂ© HPC fait Ă©galement face Ă  un nombre croissant debesoin de traitement de grandes quantitĂ©s de donnĂ©es dĂ©rivĂ©es de capteurs hautedĂ©finition et de grands appareils physique. La convergence des deux domaines-HPC et Big Data- est en cours. En fait, la communautĂ© HPC utilise dĂ©jĂ  des outilsBig Data, qui ne sont pas toujours correctement intĂ©grĂ©s, en particulier au niveaudu systĂšme de fichiers ainsi que du systĂšme de gestion des ressources (RJMS).Afin de comprendre comment nous pouvons tirer parti des clusters HPC pourl’utilisation du Big Data, et quels sont les dĂ©fis pour les infrastructures HPC, nousavons Ă©tudiĂ© plusieurs aspects de la convergence: nous avons d’abord proposĂ© uneĂ©tude sur les mĂ©thodes de provisionnement logiciel, en mettant l’accent sur lesapplications utilisant beaucoup de donnĂ©es. Nous contribuons a l’état de l’art avecune nouvelle technique de collaboration entre RJMS appelĂ©e BeBiDa basĂ©e sur 50lignes de code alors que des solutions similaires en utilisent au moins 1000 fois plus.Nous Ă©valuons ce mĂ©canisme en conditions rĂ©elles et en environnement simulĂ©avec notre simulateur Batsim. En outre, nous fournissons des extensions Ă  Batsimpour prendre en charge les entrĂ©es/sorties et prĂ©sentons le dĂ©veloppements d’unmodĂšle de systĂšme de fichiers gĂ©nĂ©rique accompagnĂ© d’un modĂšle d’applicationBig Data. Cela nous permet de complĂ©ter les expĂ©riences en conditions rĂ©ellesde BeBiDa en simulation tout en Ă©tudiant le dimensionnement et les diffĂ©rentscompromis autours des systĂšmes de fichiers.Toutes les expĂ©riences et analyses de ce travail ont Ă©tĂ© effectuĂ©es avec la reproductibilitĂ© Ă  l’esprit. Sur la base de cette expĂ©rience, nous proposons d’intĂ©grerle flux de travail du dĂ©veloppement et de l’analyse des donnĂ©es dans l’esprit dela reproductibilitĂ©, et de donner un retour sur nos expĂ©riences avec une liste debonnes pratiques

    An integrated transport solution to big data movement in high-performance networks

    Get PDF
    Extreme-scale e-Science applications in various domains such as earth science and high energy physics among multiple national institutions within the U.S. are generating colossal amounts of data, now frequently termed as “big data”. The big data must be stored, managed and moved to different geographical locations for distributed data processing and analysis. Such big data transfers require stable and high-speed network connections, which are not readily available in traditional shared IP networks such as the Internet. High-performance networking technologies and services featuring high bandwidth and advance reservation are being rapidly developed and deployed across the nation and around the globe to support such scientific applications. However, these networking technologies and services have not been fully utilized, mainly because: i) the use of these technologies and services often requires considerable domain knowledge and many application users are even not aware of their existence; and ii) the end-to-end data transfer performance largely depends on the transport protocol being used on the end hosts. The high-speed network path with reserved bandwidth in High-performance Networks has shifted the data transfer bottleneck from network segments in traditional IP networks to end hosts, which most existing transport protocols are not well suited to handle. In this dissertation, an integrated transport solution is proposed in support of data- and network-intensive applications in various science domains. This solution integrates three major components, i.e., i) transport-support workflow optimization, ii) transport profile generation, and iii) transport protocol design, into a unified framework. Firstly, a class of transport-support workflow optimization problems are formulated, where an appropriate set of resources and services are selected to compose the best transport-support workflow to meet user’s data transfer request in terms of various performance requirements. Secondly, a transport profiler named Transport Profile Generator (TPG) and its extended and accelerated version named FastProf are designed and implemented to characterize and enhance the end-to-end data transfer performance of a selected transport method over an established network path. Finally, several approaches based on rate and error threshold control are proposed to design a suite of data transfer protocols specifically tailored for big data transfer over dedicated connections. The proposed integrated transport solution is implemented and evaluated in: i) a local testbed with a single 10 Gb/s back-to-back connection and dual 10 Gb/s NIC-to-NIC connections; and ii) several wide-area networks with 10 Gb/s long-haul connections at collaborative sites including Oak Ridge National Laboratory, Argonne National Laboratory, and University of Chicago

    Future of networking is the future of Big Data, The

    Get PDF
    2019 Summer.Includes bibliographical references.Scientific domains such as Climate Science, High Energy Particle Physics (HEP), Genomics, Biology, and many others are increasingly moving towards data-oriented workflows where each of these communities generates, stores and uses massive datasets that reach into terabytes and petabytes, and projected soon to reach exabytes. These communities are also increasingly moving towards a global collaborative model where scientists routinely exchange a significant amount of data. The sheer volume of data and associated complexities associated with maintaining, transferring, and using them, continue to push the limits of the current technologies in multiple dimensions - storage, analysis, networking, and security. This thesis tackles the networking aspect of big-data science. Networking is the glue that binds all the components of modern scientific workflows, and these communities are becoming increasingly dependent on high-speed, highly reliable networks. The network, as the common layer across big-science communities, provides an ideal place for implementing common services. Big-science applications also need to work closely with the network to ensure optimal usage of resources, intelligent routing of requests, and data. Finally, as more communities move towards data-intensive, connected workflows - adopting a service model where the network provides some of the common services reduces not only application complexity but also the necessity of duplicate implementations. Named Data Networking (NDN) is a new network architecture whose service model aligns better with the needs of these data-oriented applications. NDN's name based paradigm makes it easier to provide intelligent features at the network layer rather than at the application layer. This thesis shows that NDN can push several standard features to the network. This work is the first attempt to apply NDN in the context of large scientific data; in the process, this thesis touches upon scientific data naming, name discovery, real-world deployment of NDN for scientific data, feasibility studies, and the designs of in-network protocols for big-data science

    Research and development of accounting system in grid environment

    Get PDF
    The Grid has been recognised as the next-generation distributed computing paradigm by seamlessly integrating heterogeneous resources across administrative domains as a single virtual system. There are an increasing number of scientific and business projects that employ Grid computing technologies for large-scale resource sharing and collaborations. Early adoptions of Grid computing technologies have custom middleware implemented to bridge gaps between heterogeneous computing backbones. These custom solutions form the basis to the emerging Open Grid Service Architecture (OGSA), which aims at addressing common concerns of Grid systems by defining a set of interoperable and reusable Grid services. One of common concerns as defined in OGSA is the Grid accounting service. The main objective of the Grid accounting service is to ensure resources to be shared within a Grid environment in an accountable manner by metering and logging accurate resource usage information. This thesis discusses the origins and fundamentals of Grid computing and accounting service in the context of OGSA profile. A prototype was developed and evaluated based on OGSA accounting-related standards enabling sharing accounting data in a multi-Grid environment, the World-wide Large Hadron Collider Grid (WLCG). Based on this prototype and lessons learned, a generic middleware solution was also implemented as a toolkit that eases migration of existing accounting system to be standard compatible.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research Council (EPSRC)Stanford UniversityGBUnited Kingdo

    High Performance Network Evaluation and Testing

    Get PDF
    corecore